天天看点

KMP算法学习(详解)

kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置。常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(nm)。kmp算法通过一个O(m)的预处理,使匹配的复杂度降为O(n+m)。

我们首先用一个图来描述kmp算法的思想。在字符串O中寻找f,当匹配到位置i时两个字符串不相等,这时我们需要将字符串f向前移动。常规方法是每次向前移动一位,但是它没有考虑前i-1位已经比较过这个事实,所以效率不高。事实上,如果我们提前计算某些信息,就有可能一次前移多位。假设我们根据已经获得的信息知道可以前移k位,我们分析移位前后的f有什么特点。我们可以得到如下的结论:

A段字符串是f的一个前缀。

B段字符串是f的一个后缀。

A段字符串和B段字符串相等。

所以前移k位之后,可以继续比较位置i的前提是f的前i-1个位置满足:长度为i-k-1的前缀A和后缀B相同。只有这样,我们才可以前移k位后从新的位置继续比较。

KMP算法学习(详解)

所以kmp算法的核心即是计算字符串f每一个位置之前的字符串的前缀和后缀公共部分的最大长度(不包括字符串本身,否则最大长度始终是字符串本身)。获得f每一个位置的最大公共长度之后,就可以利用该最大公共长度快速和字符串O比较。当每次比较到两个字符串的字符不同时,我们就可以根据最大公共长度将字符串f向前移动(已匹配长度-最大公共长度)位,接着继续比较下一个位置。事实上,字符串f的前移只是概念上的前移,只要我们在比较的时候从最大公共长度之后比较f和O即可达到字符串f前移的目的。

KMP算法学习(详解)

上述代码需要注意的问题是,我们求取的next数组表示长度为1到m的字符串f前缀的最大公共长度,所以需要多分配一个空间。而在遍历字符串f的时候,还是从下标0开始(位置0和1的next值为0,所以放在循环外面),到m-1为止。代码的结构和上面的讲解一致,都是利用前面的next值去求下一个next值。

计算完成next数组之后,我们就可以利用next数组在字符串O中寻找字符串f的出现位置。匹配的代码和求next数组的代码非常相似,因为匹配的过程和求next数组的过程其实是一样的。假设现在字符串f的前i个位置都和从某个位置开始的字符串O匹配,现在比较第i+1个位置。如果第i+1个位置相同,接着比较第i+2个位置;如果第i+1个位置不同,则出现不匹配,我们依旧要将长度为i的字符串分割,获得其最大公共长度next[i],然后从next[i]继续比较两个字符串。这个过程和求next数组一致,所以可以匹配代码如下(java版):

上述代码需要注意的一点是,每次我们得到一个匹配之后都要对j重新赋值。

kmp算法的复杂度是O(n+m),可以采用均摊分析来解答,具体可参考算法导论。

最后再给大家补几个图,希望有助于大家理解。

KMP算法学习(详解)

科赫曲线

KMP算法学习(详解)

自身结构重复展开