天天看点

clock()、time()、clock_gettime()和gettimeofday()函数的用法和区别【转】

转自http://blog.sina.com.cn/s/blog_790f5ae10100rwd3.html

一)ANSI clock函数 

1)概述:

clock 函数的返回值类型是clock_t,它除以CLOCKS_PER_SEC来得出时间,一般用两次clock函数来计算进程自身运行的时间.

ANSI clock有三个问题:

1)如果超过一个小时,将要导致溢出.

2)函数clock没有考虑CPU被子进程使用的情况.

3)也不能区分用户空间和内核空间.

所以clock函数在linux系统上变得没有意义.

2)测试

编写test1.c程序,测试采用clock函数的输出与time程序的区别.

vi test1.c

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main( void )

{

   long i=1000L;

   clock_t start, finish;

   double  duration;

   printf( "Time to do %ld empty loops is ", i );

   start = clock();

   while (--i){

    system("cd");

   }

   finish = clock();

   duration = (double)(finish - start) / CLOCKS_PER_SEC;

   printf( "%f seconds\n", duration );

   return 0;

}

gcc test1.c -o test1

time ./test1

Time to do 1000 empty loops is 0.180000 seconds

real    0m3.492s

user    0m0.512s

sys     0m2.972s

3)总结:

(1)程序调用 system("cd");,这里主要是系统模式子进程的消耗,test1程序不能体现这一点.

(2)0.180000 seconds秒的消耗是两次clock()函数调用除以CLOCKS_PER_SEC.

(3)clock()函数返回值是一个相对时间,而不是绝对时间.

(4)CLOCKS_PER_SEC是系统定义的宏,由GNU标准库定义为1000000.

二)times()时间函数

原型如下:

clock_t times(struct tms *buf);

tms结构体如下:

strace tms{

 clock_t tms_utime;

 clock_t tms_stime;

 clock_t tms_cutime;

 clock_t tms_cstime;

注释:

tms_utime记录的是进程执行用户代码的时间.

tms_stime记录的是进程执行内核代码的时间.

tms_cutime记录的是子进程执行用户代码的时间.

tms_cstime记录的是子进程执行内核代码的时间.

2)测试:

vi test2.c

#include <sys/times.h>

#include <sys/types.h>

#include <unistd.h>

static void do_cmd(char *);

static void pr_times(clock_t, struct tms *, struct tms *);

int main(int argc, char *argv[]){

        int i;

        for(i=1; argv[i]!=NULL; i++){

                do_cmd(argv[i]);

        }

        exit(1);

static void do_cmd(char *cmd){

        struct tms tmsstart, tmsend;

        clock_t start, end;

        int status;

        if((start=times(&tmsstart))== -1)

                puts("times error");

        if((status=system(cmd))<0)

                puts("system error");

        if((end=times(&tmsend))== -1)

        pr_times(end-start, &tmsstart, &tmsend);

        exit(0);

static void pr_times(clock_t real, struct tms *tmsstart, struct tms *tmsend){

        static long clktck=0;

        if(0 == clktck)

                if((clktck=sysconf(_SC_CLK_TCK))<0)

                           puts("sysconf err");

        printf("real:%7.2f\n", real/(double)clktck);

        printf("user-cpu:%7.2f\n", (tmsend->tms_utime - tmsstart->tms_utime)/(double)clktck);

        printf("system-cpu:%7.2f\n", (tmsend->tms_stime - tmsstart->tms_stime)/(double)clktck);

        printf("child-user-cpu:%7.2f\n", (tmsend->tms_cutime - tmsstart->tms_cutime)/(double)clktck);

        printf("child-system-cpu:%7.2f\n", (tmsend->tms_cstime - tmsstart->tms_cstime)/(double)clktck);

编译:

gcc test2.c -o test2

测试这个程序:

time ./test2 "dd if=/dev/zero f=/dev/null bs=1M count=10000"

10000+0 records in

10000+0 records out

10485760000 bytes (10 GB) copied, 4.93028 s, 2.1 GB/s

real:   4.94

user-cpu:   0.00

system-cpu:   0.00

child-user-cpu:   0.01

child-system-cpu:   4.82

real    0m4.943s

user    0m0.016s

sys     0m4.828s

(1)通过这个测试,系统的time程序与test2程序输出基本一致了.

(2)(double)clktck是通过clktck=sysconf(_SC_CLK_TCK)来取的,也就是要得到user-cpu所占用的时间,就要用

(tmsend->tms_utime - tmsstart->tms_utime)/(double)clktck);

(3)clock_t times(struct tms *buf);返回值是过去一段时间内时钟嘀嗒的次数.

(4)times()函数返回值也是一个相对时间.

三)实时函数clock_gettime

在POSIX1003.1中增添了这个函数,它的原型如下:

int clock_gettime(clockid_t clk_id, struct timespec *tp);

它有以下的特点:

1)它也有一个时间结构体:timespec ,timespec计算时间次数的单位是十亿分之一秒.

strace timespec{

 time_t tv_sec;

 long tv_nsec;

2)clockid_t是确定哪个时钟类型.

CLOCK_REALTIME: 标准POSIX实时时钟

CLOCK_MONOTONIC: POSIX时钟,以恒定速率运行;不会复位和调整,它的取值和CLOCK_REALTIME是一样的.

CLOCK_PROCESS_CPUTIME_ID和CLOCK_THREAD_CPUTIME_ID是CPU中的硬件计时器中实现的.

3)测试:

#include<time.h>

#include<stdio.h>

#include<stdlib.h>

#define MILLION 1000000

int main(void)

        long int loop = 1000;

        struct timespec tpstart;

        struct timespec tpend;

        long timedif;

        clock_gettime(CLOCK_MONOTONIC, &tpstart);

        while (--loop){

                system("cd");

        clock_gettime(CLOCK_MONOTONIC, &tpend);

        timedif = MILLION*(tpend.tv_sec-tpstart.tv_sec)+(tpend.tv_nsec-tpstart.tv_nsec)/1000;

        fprintf(stdout, "it took %ld microseconds\n", timedif);

        return 0;

gcc test3.c -lrt -o test3

计算时间:

time ./test3

it took 3463843 microseconds

real    0m3.467s

sys     0m2.936s

四)时间函数gettimeofday()

gettimeofday()可以获得当前系统的时间,是一个绝对值

int gettimeofday ( struct timeval * tv , struct timezone * tz )

timeval结型体的原型如下:

struct timeval {

               time_t      tv_sec;    

               suseconds_t tv_usec;   

           };

所以它可以精确到微秒

测试:

#include <sys/time.h>

int

main(){

        int i=10000000;

        struct timeval tvs,tve;

        gettimeofday(&tvs,NULL);

        while (--i);

        gettimeofday(&tve,NULL);

        double span = tve.tv_sec-tvs.tv_sec + (tve.tv_usec-tvs.tv_usec)/1000000.0;

        printf("time: %.12f\n",span);

gcc test5.c

./a.out

time: 0.041239000000

五)四种时间函数的比较

1)精确度比较:

以下是各种精确度的类型转换:

1秒=1000毫秒(ms), 1毫秒=1/1000秒(s);

1秒=1000000 微秒(μs), 1微秒=1/1000000秒(s);

1秒=1000000000 纳秒(ns),1纳秒=1/1000000000秒(s);

2)

clock()函数的精确度是10毫秒(ms)

times()函数的精确度是10毫秒(ms)

gettimofday()函数的精确度是微秒(μs)

clock_gettime()函数的计量单位为十亿分之一,也就是纳秒(ns)

3)测试4种函数的精确度:

vi test4.c

#include    <stdio.h>

#include    <stdlib.h>

#include    <unistd.h>

#include    <time.h>

#include    <sys/times.h>

#include    <sys/time.h>

#define WAIT for(i=0;i<298765432;i++);

#define MILLION    1000000

    int

main ( int argc, char *argv[] )

    int i;

    long ttt;

    clock_t s,e;

    struct tms aaa;

    s=clock();

    WAIT;

    e=clock();

    printf("clock time : %.12f\n",(e-s)/(double)CLOCKS_PER_SEC);

    long tps = sysconf(_SC_CLK_TCK);

    s=times(&aaa);

    e=times(&aaa);

    printf("times time : %.12f\n",(e-s)/(double)tps);

    struct timeval tvs,tve;

    gettimeofday(&tvs,NULL);

    gettimeofday(&tve,NULL);

    double span = tve.tv_sec-tvs.tv_sec + (tve.tv_usec-tvs.tv_usec)/1000000.0;

    printf("gettimeofday time: %.12f\n",span);

    struct timespec tpstart;

    struct timespec tpend;

    clock_gettime(CLOCK_REALTIME, &tpstart);

    clock_gettime(CLOCK_REALTIME, &tpend);

    double timedif = (tpend.tv_sec-tpstart.tv_sec)+(tpend.tv_nsec-tpstart.tv_nsec)/1000000000.0;

    printf("clock_gettime time: %.12f\n", timedif);

    return EXIT_SUCCESS;

gcc -lrt test4.c -o test4

debian:/tmp# ./test4

clock time : 1.190000000000

times time : 1.180000000000

gettimeofday time: 1.186477000000

clock_gettime time: 1.179271718000

六)内核时钟

默认的Linux时钟周期是100HZ,而现在最新的内核时钟周期默认为250HZ.

如何得到内核的时钟周期呢?

grep ^CONFIG_HZ /boot/config-2.6.26-1-xen-amd64

CONFIG_HZ_250=y

CONFIG_HZ=250

结果就是250HZ.

而用sysconf(_SC_CLK_TCK);得到的却是100HZ

例如:

    printf("%ld\n", tps);

为什么得到的是不同的值呢?

因为sysconf(_SC_CLK_TCK)和CONFIG_HZ所代表的意义是不同的.

sysconf(_SC_CLK_TCK)是GNU标准库的clock_t频率.

它的定义位置在:/usr/include/asm/param.h

#ifndef HZ

#define HZ 100

#endif

最后总结一下内核时间:

内核的标准时间是jiffy,一个jiffy就是一个内部时钟周期,而内部时钟周期是由250HZ的频率所产生中的,也就是一个时钟滴答,间隔时间是4毫秒(ms).

也就是说:

1个jiffy=1个内部时钟周期=250HZ=1个时钟滴答=4毫秒

每经过一个时钟滴答就会调用一次时钟中断处理程序,处理程序用jiffy来累计时钟滴答数,每发生一次时钟中断就增1.

而每个中断之后,系统通过调度程序跟据时间片选择是否要进程继续运行,或让进程进入就绪状态.

最后需要说明的是每个操作系统的时钟滴答频率都是不一样的,LINUX可以选择(100,250,1000)HZ,而DOS的频率是55HZ.

七)为应用程序计时

用time程序可以监视任何命令或脚本占用CPU的情况.

1)bash内置命令time

time sleep 1

real    0m1.016s

user    0m0.000s

sys     0m0.004s

2)/usr/bin/time的一般命令行

\time sleep 1

0.00user 0.00system 0:01.01elapsed 0%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (1major+176minor)pagefaults 0swaps

注:

在命令前加上斜杠可以绕过内部命令.

/usr/bin/time还可以加上-v看到更具体的输出:

\time -v sleep 1

        Command being timed: "sleep 1"

        User time (seconds): 0.00

        System time (seconds): 0.00

        Percent of CPU this job got: 0%

        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:01.00

        Average shared text size (kbytes): 0

        Average unshared data size (kbytes): 0

        Average stack size (kbytes): 0

        Average total size (kbytes): 0

        Maximum resident set size (kbytes): 0

        Average resident set size (kbytes): 0

        Major (requiring I/O) page faults: 0

        Minor (reclaiming a frame) page faults: 178

        Voluntary context switches: 2

        Involuntary context switches: 0

        Swaps: 0

        File system inputs: 0

        File system outputs: 0

        Socket messages sent: 0

        Socket messages received: 0

        Signals delivered: 0

        Page size (bytes): 4096

        Exit status: 0

这里的输出更多来源于结构体rusage.

最后,我们看到real time大于user time和sys time的总和,这说明进程不是在系统调用中阻塞,就是得不到运行的机会.

而sleep()的运用,也说明了这一点.

【新浪微博】 张昺华--sky

【twitter】 @sky2030_

【facebook】 张昺华 zhangbinghua

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.