天天看点

关于tf.identity 和tf.control_dependencies

首先,从tensor的定义说起,官网的解释为:A tensor is a generalization of vectors and matrices to potentially higher dimensions. tensor可以是Variable,Constant,Placeholder等等。但是,官网上还有一句话值得注意:Unlike tf.Tensor objects, a tf.Variable exists outside the context of a single session.run call.这个说明了variable的特殊性,这也就是 y = x 失效,而 y = tf.identity(x)有效的原因。同时,对于tf.control_dependencies,官网上有这么句话:control_inputs: A list of Operation or Tensor objects which must be executed or computed before running the operations defined in the context. 继续看下面的代码:

运行的结果为:

此时y的类型为tf.Variable,不受tf.control_dependencies控制。我们把y=x换成y=x+0.0,代码变为:

再次运行代码,输出为:

此时,y的类型变成了tensor类型,受tf.control_dependencies的约束,生成y之前,进行了5次自加操作。最后,换成y = tf.identity(x,name='x')。代码如下:

运行代码,输出为:

tf.identity属于tensorflow中的一个ops,跟x = x + 0.0的性质一样,返回一个tensor,受到tf.control_dependencies的约束,所以生效。

转自:https://www.jianshu.com/p/6304b7c7896b