天天看点

EL之Bagging:kaggle比赛之利用泰坦尼克号数据集建立Bagging模型对每个人进行获救是否预测(二)

核心代码

bagging_clf = BaggingRegressor(clf_LoR, n_estimators=10, max_samples=0.8, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=-1)

   bagging_clf.fit(X, y)

#BaggingRegressor

class BaggingRegressor Found at: sklearn.ensemble.bagging

class BaggingRegressor(BaseBagging, RegressorMixin):

   """A Bagging regressor.

   A Bagging regressor is an ensemble meta-estimator that fits base

   regressors each on random subsets of the original dataset and then

   aggregate their individual predictions (either by voting or by averaging)

   to form a final prediction. Such a meta-estimator can typically be used as

   a way to reduce the variance of a black-box estimator (e.g., a decision

   tree), by introducing randomization into its construction procedure and

   then making an ensemble out of it.

   This algorithm encompasses several works from the literature. When

    random

   subsets of the dataset are drawn as random subsets of the samples, then

   this algorithm is known as Pasting [1]_. If samples are drawn with

   replacement, then the method is known as Bagging [2]_. When random

    subsets

   of the dataset are drawn as random subsets of the features, then the

    method

   is known as Random Subspaces [3]_. Finally, when base estimators are

    built

   on subsets of both samples and features, then the method is known as

   Random Patches [4]_.

   Read more in the :ref:`User Guide <bagging>`.

   Parameters

   ----------

   base_estimator : object or None, optional (default=None)

   The base estimator to fit on random subsets of the dataset.

   If None, then the base estimator is a decision tree.

   n_estimators : int, optional (default=10)

   The number of base estimators in the ensemble.

   max_samples : int or float, optional (default=1.0)

   The number of samples to draw from X to train each base estimator.

   - If int, then draw `max_samples` samples.

   - If float, then draw `max_samples * X.shape[0]` samples.

   max_features : int or float, optional (default=1.0)

   The number of features to draw from X to train each base estimator.

   - If int, then draw `max_features` features.

   - If float, then draw `max_features * X.shape[1]` features.

   bootstrap : boolean, optional (default=True)

   Whether samples are drawn with replacement.

   bootstrap_features : boolean, optional (default=False)

   Whether features are drawn with replacement.

   oob_score : bool

   Whether to use out-of-bag samples to estimate

   the generalization error.

   warm_start : bool, optional (default=False)

   When set to True, reuse the solution of the previous call to fit

   and add more estimators to the ensemble, otherwise, just fit

   a whole new ensemble.

   n_jobs : int, optional (default=1)

   The number of jobs to run in parallel for both `fit` and `predict`.

   If -1, then the number of jobs is set to the number of cores.

   random_state : int, RandomState instance or None, optional

    (default=None)

   If int, random_state is the seed used by the random number generator;

   If RandomState instance, random_state is the random number

    generator;

   If None, the random number generator is the RandomState instance

    used

   by `np.random`.

   verbose : int, optional (default=0)

   Controls the verbosity of the building process.

   Attributes

   estimators_ : list of estimators

   The collection of fitted sub-estimators.

   estimators_samples_ : list of arrays

   The subset of drawn samples (i.e., the in-bag samples) for each base

   estimator. Each subset is defined by a boolean mask.

   estimators_features_ : list of arrays

   The subset of drawn features for each base estimator.

   oob_score_ : float

   Score of the training dataset obtained using an out-of-bag estimate.

   oob_prediction_ : array of shape = [n_samples]

   Prediction computed with out-of-bag estimate on the training

   set. If n_estimators is small it might be possible that a data point

   was never left out during the bootstrap. In this case,

   `oob_prediction_` might contain NaN.

   References

   .. [1] L. Breiman, "Pasting small votes for classification in large

   databases and on-line", Machine Learning, 36(1), 85-103, 1999.

   .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,

   1996.

   .. [3] T. Ho, "The random subspace method for constructing decision

   forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,

   1998.

   .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine

   Learning and Knowledge Discovery in Databases, 346-361, 2012.

   """

   def __init__(self,

       base_estimator=None,

       n_estimators=10,

       max_samples=1.0,

       max_features=1.0,

       bootstrap=True,

       bootstrap_features=False,

       oob_score=False,

       warm_start=False,

       n_jobs=1,

       random_state=None,

       verbose=0):

       super(BaggingRegressor, self).__init__(base_estimator,

        n_estimators=n_estimators, max_samples=max_samples,

        max_features=max_features, bootstrap=bootstrap,

        bootstrap_features=bootstrap_features, oob_score=oob_score,

        warm_start=warm_start, n_jobs=n_jobs, random_state=random_state,

        verbose=verbose)

   def predict(self, X):

       """Predict regression target for X.

       The predicted regression target of an input sample is computed as

        the

       mean predicted regression targets of the estimators in the ensemble.

       Parameters

       ----------

       X : {array-like, sparse matrix} of shape = [n_samples, n_features]

           The training input samples. Sparse matrices are accepted only if

           they are supported by the base estimator.

       Returns

       -------

       y : array of shape = [n_samples]

           The predicted values.

       """

       check_is_fitted(self, "estimators_features_")

   # Check data

       X = check_array(X, accept_sparse=['csr', 'csc'])

   # Parallel loop

       n_jobs, n_estimators, starts = _partition_estimators(self.n_estimators,

        self.n_jobs)

       all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose)(

           delayed(_parallel_predict_regression)(

               self.estimators_[starts[i]:starts[i + 1]],

               self.estimators_features_[starts[i]:starts[i + 1]],

               X) for

           i in range(n_jobs))

   # Reduce

       y_hat = sum(all_y_hat) / self.n_estimators

       return y_hat

   def _validate_estimator(self):

       """Check the estimator and set the base_estimator_ attribute."""

       super(BaggingRegressor, self)._validate_estimator

        (default=DecisionTreeRegressor())

   def _set_oob_score(self, X, y):

       n_samples = y.shape[0]

       predictions = np.zeros((n_samples, ))

       n_predictions = np.zeros((n_samples, ))

       for estimator, samples, features in zip(self.estimators_,

           self.estimators_samples_,

           self.estimators_features_):

       # Create mask for OOB samples

           mask = ~samples

           predictions[mask] += estimator.predict(mask:])[(X[:features])

           n_predictions[mask] += 1

       if (n_predictions == 0).any():

           warn("Some inputs do not have OOB scores. "

               "This probably means too few estimators were used "

               "to compute any reliable oob estimates.")

           n_predictions[n_predictions == 0] = 1

       predictions /= n_predictions

       self.oob_prediction_ = predictions

       self.oob_score_ = r2_score(y, predictions)

继续阅读