AVL树定义:在计算机科学中,AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文《An algorithm for the organization of information》中发表了它。
平衡二叉树是带有平衡条件的二叉查找树,指的是空树或者任一结点左、右高度差的绝对值不超过1的二叉树.适合用于插入删除次数比较少,但查找多的情况。
比如:
实现的难点在于,二叉树的平衡旋转
分为四种旋转,RR、LL、LR、RL旋转
RR旋转
麻烦结点在发现者右子树的右边,所以叫RR插入,需要RR旋转
LL旋转
麻烦结点在发现者左子树的左边,所以叫LL插入,需要LL旋转
LR旋转
RL旋转 C#实现源码public class Bit : IComparable<Bit>
{
public int Value;
public Bit(int value) => Value = value;
public int CompareTo(Bit other) => Value - other.Value;
}
public class AvlTreeNote<TKey> where TKey : IComparable<TKey>
{
public TKey Key;
public int Height;
public AvlTreeNote<TKey> LChild;
public AvlTreeNote<TKey> RChild;
public AvlTreeNote(TKey key, AvlTreeNote<TKey> lChild, AvlTreeNote<TKey> rChild)
{
Key = key;
LChild = lChild;
RChild = rChild;
}
}
public class AvlTree<TKey> where TKey : IComparable<TKey>
{
public AvlTreeNote<TKey> Root; // 根节点
private bool _isBalance; // 标志是否平衡过二叉树
/// <summary>
/// 插入节点
/// </summary>
/// <param name="key"></param>
/// <returns></returns>
public AvlTreeNote<TKey> Insert(TKey key) => Root = Insert(key, Root);
/// <summary>
/// 插入到指定节点下
/// </summary>
/// <param name="key"></param>
/// <param name="node"></param>
/// <returns></returns>
private AvlTreeNote<TKey> Insert(TKey key, AvlTreeNote<TKey> node)
{
if (node == null)
{
node = new AvlTreeNote<TKey>(key, null, null);
}
else
{
// 如果树里已经存在该节点,直接返回为null
if (key.CompareTo(node.Key) == 0) return null;
if (key.CompareTo(node.Key) < 0)
{
// 应该在左树进行搜索插入
node.LChild = Insert(key, node.LChild);
if (node.LChild == null) return node;
switch (node.Height)
{
case 1:
return LeftBalance(node);
case 0:
node.Height = _isBalance ? 0 : 1;
break;
case -1:
node.Height = 0;
break;
}
}
else
{
// 应该在右树进行搜索插入
node.RChild = Insert(key, node.RChild);
if (node.RChild == null) return node;
switch (node.Height)
{
case 1:
node.Height = 0;
break;
case 0:
node.Height = _isBalance ? 0 : -1;
break;
case -1:
return RightBalance(node);
}
}
}
_isBalance = false;
return node;
}
/// <summary>
/// 左树平衡处理
/// </summary>
/// <param name="node"></param>
private AvlTreeNote<TKey> LeftBalance(AvlTreeNote<TKey> node)
{
if (_isBalance) return node;
var leftNode = node.LChild;
switch (leftNode.Height)
{
case 1:
node.Height = leftNode.Height = 0;
node = R_Rotate(node);
break;
case -1:
node.Height = leftNode.Height = 0;
node.LChild = L_Rotate(leftNode);
node = R_Rotate(node);
break;
}
return node;
}
private AvlTreeNote<TKey> RightBalance(AvlTreeNote<TKey> node)
{
if (_isBalance) return node;
var rightNode = node.RChild;
switch (rightNode.Height)
{
case -1:
node.Height = rightNode.Height = 0;
node = L_Rotate(node);
break;
case 1:
node.Height = rightNode.Height = 0;
node.RChild = R_Rotate(rightNode);
node = L_Rotate(node);
break;
}
return node;
}
/// <summary>
/// 右旋操作
/// </summary>
/// <param name="node"></param>
private AvlTreeNote<TKey> R_Rotate(AvlTreeNote<TKey> node)
{
var temp = node.LChild;
node.LChild = temp.RChild;
temp.RChild = node;
_isBalance = true;
return temp;
}
/// <summary>
/// 左旋操作
/// </summary>
/// <param name="node"></param>
private AvlTreeNote<TKey> L_Rotate(AvlTreeNote<TKey> node)
{
var temp = node.RChild;
node.RChild = temp.LChild;
temp.LChild = node;
_isBalance = true;
return temp;
}
/// <summary>
/// 查找二叉树
/// </summary>
/// <param name="key"></param>
/// <returns></returns>
public AvlTreeNote<TKey> Find(TKey key) => Find(key, Root);
/// <summary>
/// 查找二叉树
/// </summary>
/// <param name="key"></param>
/// <param name="node"></param>
/// <returns></returns>
public AvlTreeNote<TKey> Find(TKey key, AvlTreeNote<TKey> node)
{
if (node == null) return null;
if (key.CompareTo(node.Key) < 0)
{
node = Find(key, node.LChild);
}
else if (key.CompareTo(node.Key) > 0)
{
node = Find(key, node.RChild);
}
return node;
}
/// <summary>
/// 用于删除该节点移动节点
/// </summary>
/// <param name="node"></param>
/// <param name="findNode"></param>
/// <returns></returns>
private AvlTreeNote<TKey> Move(AvlTreeNote<TKey> node, AvlTreeNote<TKey> findNode)
{
AvlTreeNote<TKey> moveNode;
if (findNode != null)
{
if (findNode.RChild != null)
{
moveNode = findNode.RChild;
findNode.RChild = null;
}
else
{
findNode.LChild = null;
moveNode = findNode;
}
if (node.LChild != moveNode) moveNode.LChild = node.LChild;
if (node.RChild != moveNode) moveNode.RChild = node.RChild;
}
else
{
moveNode = null;
}
node.LChild = null;
node.RChild = null;
node.Key = default(TKey);
node.Height = 0;
return moveNode;
}
/// <summary>
/// 删除节点
/// </summary>
/// <param name="key"></param>
public void Remove(TKey key) => Root = Remove(key, Root);
private AvlTreeNote<TKey> Remove(TKey key, AvlTreeNote<TKey> node)
{
if (node == null) return null;
if (key.CompareTo(node.Key) < 0)
{
if (node.LChild == null) return node;
node.LChild = Remove(key, node.LChild);
switch (node.Height)
{
case 1:
node.Height = 0;
break;
case 0:
node.Height = -1;
break;
case -1:
// 要进行旋转
node.Height = 0;
return node.LChild == null ? RightBalance(node) : LeftBalance(node);
}
}
else if (key.CompareTo(node.Key) > 0)
{
if (node.RChild == null) return node;
node.RChild = Remove(key, node.RChild);
switch (node.Height)
{
case 1:
// 要进行旋转
node.Height = 0;
return node.RChild == null ? LeftBalance(node) : RightBalance(node);
break;
case 0:
node.Height = 1;
break;
case -1:
node.Height = 0;
break;
}
}
else if (key.CompareTo(node.Key) == 0)
{
var findNode = Remove(key, node.LChild);
node = Move(node, findNode);
}
_isBalance = false;
return node;
}
}
C/C++实现
#include <stack>//栈
#include <queue>
#include <iostream>
#include <initializer_list>
using namespace std;
template <typename Comparable>
class AVLTree
{
private:
static const int ALLOWED_IMBLANCE = 1;
struct AVLNode
{
Comparable element;
AVLNode * left;
AVLNode * right;
int height;
AVLNode(const Comparable & theElement, AVLNode *lt, AVLNode *rt,int h = 0)
:element(theElement), left(lt), right(rt),height(h) {}
AVLNode(Comparable && theElement, AVLNode *lt, AVLNode *rt, int h = 0)
:element(std::move(theElement)), left(lt), right(rt),height(h) {}
};
AVLNode * root;
void Insert(const Comparable &x, AVLNode * & t);
void Insert(Comparable && x, AVLNode *&t);
void Insert(initializer_list<Comparable> &d, AVLNode *& t);
void Remove(const Comparable &x, AVLNode *&t);
AVLNode * findMin(AVLNode *t)const;
AVLNode * findMax(AVLNode *t)const;
bool contains(const Comparable &x, AVLNode *t) const;
void makeEmpty(AVLNode * &t);
void PrintTree(AVLNode *t) const;
AVLNode* clone(AVLNode *t)const
{
if (t == nullptr)
return nullptr;
return new AVLNode(t->element, clone(t->left), clone(t->right));
}
void rotateWithLeftChild(AVLNode *& k2);
void rotateWithRightChild(AVLNode *& k2);
void doubleWithLeftChild(AVLNode *&k3);
void doubleWithRightChild(AVLNode *&k3);
void balance(AVLNode*& t);
public:
AVLTree() :root(nullptr) {}
AVLTree(const AVLTree & rhs) :root(nullptr) { root = clone(rhs.root); }
AVLTree(AVLTree && rhs) :root(nullptr) { root = rhs.root;rhs = nullptr;}
~AVLTree() { makeEmpty(); }
const Comparable & findMin() const { return findMin(root)->element; }
const Comparable & findMax() const { findMax(root)->element; }
bool contains(const Comparable & x) const { return contains(x, root); }
bool isEmpty() const { return root == nullptr; }
int height(AVLNode *t) const { return t == nullptr ? -1 : t->height; }
void PrintTree()const { PrintTree(root); }
void makeEmpty() { makeEmpty(root); }
void Insert(const Comparable &x) { Insert(x,root); }
void Insert(Comparable && x) { Insert(x,root); }
void Insert(initializer_list<Comparable>d) { Insert(d, root); }
void Remove(const Comparable &x) { Remove(x, root); }
AVLTree & operator=(const AVLTree & rhs)
{
if (this != &rhs)
{
makeEmpty();
root = clone(rhs.root);
}
return *this;
}
AVLTree & operator=(AVLTree && rhs)
{
if (this != &rhs)
{
makeEmpty();
root = rhs.root;
rhs.root = nullptr;
}
return *this;
}
friend int Max(int a, int b);
};
int Max(int a, int b)
{
return (a > b) ? a : b;
}
template<typename Comparable>
void AVLTree<Comparable>::Insert(const Comparable & x, AVLNode *& t)
{
if (t == nullptr)
{
t = new AVLNode(x, nullptr, nullptr);
}
else if (x < t->element)
Insert(x, t->left);
else if (t->element < x)
Insert(x, t->right);
balance(t);
}
template<typename Comparable>
void AVLTree<Comparable>::Insert(Comparable && x, AVLNode *& t)
{
if (t == nullptr)
{
t = new AVLNode(std::move(x), nullptr, nullptr);
}
else if (x < t->element)
Insert(std::move(x), t->left);
else if (t->element < x)
Insert(std::move(x), t->right);
balance(t);
}
template<typename Comparable>
void AVLTree<Comparable>::Insert(initializer_list<Comparable> &d, AVLNode *& t)
{
for (auto p = d.begin(); p != d.end(); p++)
{
Insert(*p, t);
}
}
template<typename Comparable>
void AVLTree<Comparable>::Remove(const Comparable & x, AVLNode *& t)
{
if (t == nullptr) //没找到相应的项什么都不做
return;
if (x < t->element)
Remove(x, t->left);
else if (x > t->element)
Remove(x, t->right);
else if (t->left != nullptr && t->right != nullptr)//找到了 但是有两个儿子
{//取右子树的最小元素替代 或者左子树的最大元素,好处是右子树的最小元素一定在右子树的最左边,左子树的最大元素一定在左子树的最右边
t->element = findMin(t->right)->element;//在右子树中找到最小的元素填充删除结点
Remove(t->element, t->right);//在删除节点的右子树中删除最小元素.
}
else //有一个儿子 或者没有
{
AVLNode * oldNode = t;
t = (t->left != nullptr) ? t->left : t->right; //如果有儿子,就让儿子接上,如果没有那t就设置为nullptr
delete oldNode;
}
balance(t);
}
template<typename Comparable>
typename AVLTree<Comparable>::AVLNode *
AVLTree<Comparable>::findMin(AVLNode * t) const
{
//递归版本
//if (t == nullptr)
// return nullptr;
//if (t->left == nullptr)
// return t;
//return findMin(t->left);
//非递归版本
if (t != nullptr)
while (t->left != nullptr)
t = t->right;
return t;
}
template<typename Comparable>
typename AVLTree<Comparable>::AVLNode *
AVLTree<Comparable>::findMax(AVLNode * t)const
{
//递归版本
/*if (t == nullptr)
return;
if (t->right == nullptr)
return t;
return findMax(t->right);*/
if (t != nullptr)
while (t->right != nullptr)
t = t->right;
return t;
}
template<typename Comparable>
bool AVLTree<Comparable>::contains(const Comparable & x, AVLNode * t) const
{
//递归版本
/*if (t == nullptr)
return false;
else if (x < t->element)
return contains(x, t->left);
else if (x > t->element)
return contains(x, t->right);
else
retu true;*/
//非递归版本
while (t != nullptr)
{
if (x < t->element)
t = t->left;
else if (x > t->element)
t = t->right;
else
return true;
}
return false;
}
template<typename Comparable>
void AVLTree<Comparable>::makeEmpty(AVLNode *& t)
{
if (t != nullptr)
{
makeEmpty(t->left);
makeEmpty(t->right);
delete t;
}
t = nullptr;
}
template<typename Comparable>
void AVLTree<Comparable>::PrintTree(AVLNode * t) const
{
//递归先序遍历
if (t != nullptr)
{
std::cout << t->element << " "; //先序遍历
PrintTree(t->left);
PrintTree(t->right);
}
//非递归的先序遍历, 使用栈
//AVLNode * temp = t;
//stack<AVLNode*>s;
//while (temp || !s.empty())
//{
// while (temp) //一直向左将沿途结点压入栈
// {
// s.push(temp);
// temp = temp->left;
// }
// if (!s.empty())
// {
// temp = s.top();
// s.pop();
// std::cout << temp->element << " "; //先序遍历
// temp = temp->right;
// }
//}
//层序遍历,使用队列
//AVLNode * temp;
//queue<AVLNode*>q;
//if (t == nullptr)
// return;
//q.push(t);
//while (!q.empty())
//{
// temp = q.front();
// q.pop();
// std::cout << temp->element << " ";
// if (temp->left)
// q.push(temp->left);
// if (temp->right)
// q.push(temp->right);
//}
}
template<typename Comparable>
void AVLTree<Comparable>::rotateWithLeftChild(AVLNode *& k2)//左旋
{
AVLNode *k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = Max(height(k2->left), height(k2->right)) + 1;
k1->height = Max(height(k1->left), k2->height) + 1;
k2 = k1;//把所有的设置都变为改变后的设置
}
template<typename Comparable>
void AVLTree<Comparable>::rotateWithRightChild(AVLNode *& k2)//右旋
{
AVLNode *k1 = k2->right;
k2->right = k1->left;
k1->left = k2;
k2->height = Max(height(k2->right), height(k2->left)) + 1;
k1->height = Max(height(k1->right), k2->height) + 1;
k2 = k1;
}
template<typename Comparable>
void AVLTree<Comparable>::doubleWithLeftChild(AVLNode *& k3)//左右旋转
{
rotateWithRightChild(k3->left);
rotateWithLeftChild(k3);
}
template<typename Comparable>
void AVLTree<Comparable>::doubleWithRightChild(AVLNode *& k3)//右左旋转
{
rotateWithLeftChild(k3->right);
rotateWithRightChild(k3);
}
template<typename Comparable>
void AVLTree<Comparable>::balance(AVLNode *& t)
{
if (t == nullptr)
{
return;
}
if (height(t->left) - height(t->right) > ALLOWED_IMBLANCE)
if (height(t->left->left) >= height(t->left->right))
rotateWithLeftChild(t);
else
doubleWithLeftChild(t);
else if(height(t->right) - height(t->left) > ALLOWED_IMBLANCE)
if (height(t->right->right) >= height(t->right->left))
rotateWithRightChild(t);
else
doubleWithRightChild(t);
t->height = max(height(t->left), height(t->right)) + 1;
}