3 command线程池
ThreadPoolKey代表了一个HystrixThreadPool,用来进行统一监控,统计,缓存
默认的threadpool key就是command group名称
每个command都会跟它的ThreadPoolKey对应的ThreadPool绑定
如果不想直接用command group,也可以手动设置thread pool name
public CommandHelloWorld(String name) {
super(Setter.withGroupKey(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"))
.andCommandKey(HystrixCommandKey.Factory.asKey("HelloWorld"))
.andThreadPoolKey(HystrixThreadPoolKey.Factory.asKey("HelloWorldPool")));
this.name = name;
}
command threadpool => command group => command key
command key
- 代表了一类command,代表底层的依赖服务的一个接口
- command group
代表了某一个底层的依赖服务,合理,一个依赖服务可能会暴露出来多个接口,每个接口就是一个command key
在逻辑上去组织起来一堆command key的调用,统计信息,成功次数,timeout超时次数,失败次数,可以看到某一个服务整体的一些访问情况
推荐是根据一个服务去划分出一个线程池,command key默认都是属于同一个线程池的
比如说你以一个服务为粒度,估算出来这个服务每秒的所有接口加起来的整体QPS在100左右
你调用那个服务的当前服务,部署了10个服务实例,每个服务实例上,其实用这个command group对应这个服务,给一个线程池,量大概在10个左右,就可以了,你对整个服务的整体的访问QPS大概在每秒100左右
一般来说,command group是用来在逻辑上组合一堆command的
举个例子,对于一个服务中的某个功能模块来说,希望将这个功能模块内的所有command放在一个group中,那么在监控和报警的时候可以放一起看
command group,对应了一个服务,但是这个服务暴露出来的几个接口,访问量很不一样,差异非常之大
你可能就希望在这个服务command group内部,包含的对应多个接口的command key,做一些细粒度的资源隔离
对同一个服务的不同接口,都使用不同的线程池
command key -> command group
command key -> 自己的threadpool key
逻辑上来说,多个command key属于一个command group,在做统计的时候,会放在一起统计
每个command key有自己的线程池,每个接口有自己的线程池,去做资源隔离和限流
但对于thread pool资源隔离来说,可能是希望能够拆分的更加一致一些,比如在一个功能模块内,对不同的请求可以使用不同的thread pool
command group一般来说,可以是对应一个服务,多个command key对应这个服务的多个接口,多个接口的调用共享同一个线程池
如果说你的command key,要用自己的线程池,可以定义自己的threadpool key,就ok了
4 coreSize
设置线程池的大小,默认是10
HystrixThreadPoolProperties.Setter()
.withCoreSize(int value)
一般来说,用这个默认的10个线程大小就够了
5 queueSizeRejectionThreshold
控制queue满后reject的threshold,因为maxQueueSize不允许热修改,因此提供这个参数可以热修改,控制队列的最大值
HystrixCommand在提交到线程池之前,其实会先进入一个队列中,这个队列满了之后,才会reject
默认值是5
HystrixThreadPoolProperties.Setter()
.withQueueSizeRejectionThreshold(int value)
线程池+queue的工作原理
6isolation.semaphore.maxConcurrentRequests
设置使用SEMAPHORE隔离策略的时候,允许访问的最大并发量,超过这个最大并发量,请求直接被reject
这个并发量的设置,跟线程池大小的设置,应该是类似的
但是基于信号量的话,性能会好很多,而且hystrix框架本身的开销会小很多
默认值是10,设置的小一些,否则因为信号量是基于调用线程去执行command的,而且不能从timeout中抽离,因此一旦设置的太大,而且有延时发生,可能瞬间导致tomcat本身的线程资源本占满