天天看点

AnalyticDB PostgreSQL 万倍查询加速——使用实时物化视图加速带可变参数的查询

在OLAP查询的很多场景中,查询语句中会带有可变参数(例如查询某一天或者某一个小时内所有订单的数量),但是物化视图需要提前完成构建,即使是实时物化视图,也需要提前针对查询进行创建。针对上述情况,您可以通过实时物化视图配合自动查询改写功能来加速带有可变参数的查询。

操作方法

以下内容以TPC-H Q1的查询为例,介绍如何通过实时物化视图与自动查询改写功能对带有可变参数的查询进行加速。

该查询语句引用于

TPC-H

建表语句如下:

CREATE TABLE lineitem (
    l_orderkey    bigint not null,
    l_partkey     integer not null,
    l_suppkey     integer not null,
    l_linenumber  integer not null,
    l_quantity    numeric not null,
    l_extendedprice  numeric not null,
    l_discount    numeric not null,
    l_tax         numeric not null,
    l_returnflag  "char" not null,
    l_linestatus  "char" not null,
    l_shipdate    date not null,
    l_commitdate  date not null,
    l_receiptdate date not null,
    l_shipinstruct char(25) not null,
    l_shipmode     char(10) not null,
    l_comment      varchar(44) not null
) DISTRIBUTED BY (l_orderkey);      

TPC-H Q1查询语句如下:

SELECT l_returnflag,
    l_linestatus,
    sum(l_quantity) as sum_qty,
    sum(l_extendedprice) as sum_base_price,
    sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
    sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
    avg(l_quantity) as avg_qty,
    avg(l_extendedprice) as avg_price,
    avg(l_discount) as avg_disc,
    count(*) as count_order
FROM
    lineitem
WHERE
    l_shipdate <= date '1998-12-01' - interval '$1' day --动态条件 $1 = 取值范围为[60,120]
GROUP BY
    l_returnflag,
    l_linestatus
ORDER BY
    l_returnflag,
    l_linestatus
LIMIT 1;      

通过TPC-H Q1的查询可以看出,WHERE条件中的l_shipdate的范围根据业务会在

[60,120]

之间变化。

根据TPC-H Q1查询语句,物化视图设计如下:

CREATE INCREMENTAL MATERIALIZED VIEW q1_mv
AS
SELECT
    l_returnflag,
    l_linestatus,
    l_shipdate,
    sum(l_quantity) as sum_qty,
    sum(l_extendedprice) as sum_base_price,
    sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
    sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
    count(*) as count_order,
    sum(l_extendedprice) as sum_price,
    sum(l_discount) as sum_disc,
    count(l_quantity) as count_qty,
    count(l_extendedprice) as count_price,
    count(l_discount) as count_disc
FROM
    lineitem
WHERE
    l_shipdate <= date '1998-12-01' - interval '60' day
GROUP BY
    l_returnflag,
    l_linestatus,
    l_shipdate
DISTRIBUTED BY (l_returnflag, l_linestatus);      

以上操作中自动查询改写主要使用了如下特性:

  • 重聚合补偿按照SQL执行规则,SQL会先执行WHERE条件过滤,再执行GROUP BY。TPC-H Q1的原始查询GROUP BY只有

    l_returnflag,l_linestatus

    2个字段,而为了支持WHERE条件中包含可变参数,创建的实时物化视图GROUP BY中包含了

    l_returnflag,l_linestatus

    l_shipdate

    3个字段。在执行真实查询时,在物化视图上应用动态的WHERE条件,然后执行重聚合,最终得到GROUP BY

    l_returnflag,l_linestatus

    2个字段的结果。

    说明 由于avg函数不支持重聚合,所以这里利用了自动查询改写的表达式补偿机制,在物化视图中创建了支持重聚合的sum和count,通过

    avg = sum/count

    这一特性完成改写。
  • WHERE条件范围匹配虽然在创建物化视图时不指定WHERE条件情况下,自动查询改写也会补充上条件,但是该业务限制了查询条件动态变化的范围为

    [60,120]

    。在创建物化视图时,您可以将WHERE条件范围缩小至60,物化视图即可包含60~120间的任意取值。自动改写查询会判断实际查询SQL的条件是否属于物化视图的子集,如果属于,将进行改写并补偿需要增加的条件。

执行查询计划,查看物化视图的使用情况。查询计划示例如下:

EXPLAIN SELECT
    l_returnflag,
    l_linestatus,
    sum(l_quantity) as sum_qty,
    sum(l_extendedprice) as sum_base_price,
    sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
    sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
    avg(l_quantity) as avg_qty,
    avg(l_extendedprice) as avg_price,
    avg(l_discount) as avg_disc,
    count(*) as count_order
FROM
    lineitem
WHERE
    l_shipdate <= date '1998-12-01' - interval '100' day
GROUP BY
    l_returnflag,
    l_linestatus
ORDER BY
    l_returnflag,
    l_linestatus
LIMIT 1;      

返回示例如下:

QUERY PLAN
------------------------------------------------------------------------------------------------------------
 Limit  (cost=1.01..1.13 rows=1 width=234)
   ->  Gather Motion 3:1  (slice1; segments: 3)  (cost=1.01..1.13 rows=1 width=234)
         Merge Key: l_returnflag, l_linestatus
         ->  Limit  (cost=1.01..1.11 rows=1 width=234)
               ->  GroupAggregate  (cost=1.01..1.11 rows=1 width=234)
                     Group Key: l_returnflag, l_linestatus
                     ->  Sort  (cost=1.01..1.01 rows=1 width=194)
                           Sort Key: l_returnflag, l_linestatus
                           ->  Seq Scan on q1_mv  (cost=0.00..1.00 rows=1 width=194)
                                 Filter: (l_shipdate <= '1998-08-23 00:00:00'::timestamp without time zone)
 Optimizer: Postgres query optimizer
(11 rows)      

测试结果

TPC-H Q1查询语句经过实时物化视图与自动查询改写的加速后,查询速度得到了巨大的提升。测试数据表明,在16个计算节点组成的AnalyticDB PostgreSQL版实例上进行1 TB数据的TPC-H测试,Q1的查询使用实时物化视图配合自动查询改写,可以将查询时间从约340s优化至0.04s,查询速度提升接近一万倍。

相关文档