天天看点

Python3.7 dataclass使用指南

本文将带你走进python3.7的新特性dataclass,通过本文你将学会dataclass的使用并避免踏入某些陷阱。

  • dataclass简介
  • dataclass的使用
    • 定义一个dataclass
    • 深入dataclass装饰器
    • 数据类的基石——dataclasses.field
    • 一些常用函数
    • dataclass继承
  • 总结

dataclass的定义位于[PEP-557](https://www.python.org/dev/peps/pep-0557/),根据定义一个dataclass是指“一个带有默认值的可变的namedtuple”,广义的定义就是有一个类,它的属性均可公开访问,可以带有默认值并能被修改,而且类中含有与这些属性相关的类方法,那么这个类就可以称为dataclass,再通俗点讲,dataclass就是一个含有数据及操作数据方法的容器。

乍一看可能会觉得这个概念不就是普通的class么,然而还是有几处不同:

  1. 相比普通class,dataclass通常不包含私有属性,数据可以直接访问
  2. dataclass的repr方法通常有固定格式,会打印出类型名以及属性名和它的值
  3. dataclass拥有

    __eq__

    __hash__

    魔法方法
  4. dataclass有着模式单一固定的构造方式,或是需要重载运算符,而普通class通常无需这些工作

基于上述原因,通常自己实现一个dataclass是繁琐而无聊的,而dataclass单一固定的行为正适合程序为我们自动生成,于是

dataclasses

模块诞生了。

配合类型注解语法,我们可以轻松生成一个实现了

__init__

__repr__

__cmp__

等方法的dataclass:

from dataclasses import dataclass

@dataclass
class InventoryItem:
    '''Class for keeping track of an item in inventory.'''
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand
           

同时使用dataclass也有一些好处,它比namedtuple更灵活。同时因为它是一个常规的类,所以你可以享受继承带来的便利。

我们分x步介绍dataclass的使用,首先是如何定义一个dataclass。

`dataclasses`模块提供了一个装饰器帮助我们定义自己的数据类:

```python

@dataclass

class Lang:

"""a dataclass that describes a programming language"""

name: str = 'python'

strong_type: bool = True

static_type: bool = False

age: int = 28

```

我们定义了一个描述某种程序语言特性的数据类——`Lang`,在接下来的例子中我们都会用到这个类。

在数据类被定义后,会根据给出的类型注解生成一个如下的初始函数:

def __init__(self, name: str='python',
            strong_type: bool=True,
            static_type: bool=False,
            age: int=28):
    self.name = name
    self.strong_type = strong_type
    self.static_type = static_type
    self.age = age
           

可以看到初始化操作都已经自动生成了,让我们试用一下:

>>> Lang()
Lang(name='python', strong_type=True, static_type=False, age=28)
>>> Lang('js', False, False, 23)
Lang(name='js', strong_type=False, static_type=False, age=23)
>>> Lang('js', False, False, 23) == Lang()
False
>>> Lang('python', True, False, 28) == Lang()
True
           

例子中可以看出

__repr__

__eq__

方法也已经为我们生成了,如果没有其他特殊要求的话这个dataclass已经具备了投入生产环境的能力,是不是很神奇?

dataclass的魔力源泉都在`dataclass`这个装饰器中,如果想要完全掌控dataclass的话那么它是你必须了解的内容。

装饰器的原型如下:

dataclasses.dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False)
           

dataclass

装饰器将根据类属性生成数据类和数据类需要的方法。

我们的关注点集中在它的

kwargs

上:

key 含义
init 指定是否自动生成

__init__

,如果已经有定义同名方法则忽略这个值,也就是指定为True也不会自动生成
repr 同init,指定是否自动生成

__repr__

;自动生成的打印格式为

class_name(arrt1:value1, attr2:value2, ...)

eq 同init,指定是否生成

__eq__

;自动生成的方法将按属性在类内定义时的顺序逐个比较,全部的值相同才会返回True
order 自动生成

__lt__

__le__

__gt__

__ge__

,比较方式与eq相同;如果order指定为True而eq指定为False,将引发

ValueError

;如果已经定义同名函数,将引发

TypeError

unsafehash 如果是False,将根据eq和frozen参数来生成

__hash__

:

1. eq和frozen都为True,

__hash__

将会生成

2. eq为True而frozen为False,

__hash__

被设为

None

3. eq为False,frozen为True,

__hash__

将使用超类(object)的同名属性(通常就是基于对象id的hash)

当设置为True时将会根据类属性自动生成

__hash__

,然而这是不安全的,因为这些属性是默认可变的,这会导致hash的不一致,所以除非能保证对象属性不可随意改变,否则应该谨慎地设置该参数为True
frozen 设为True时对field赋值将会引发错误,对象将是不可变的,如果已经定义了

__setattr__

__delattr__

将会引发

TypeError

有默认值的属性必须定义在没有默认值的属性之后,和对kw参数的要求一样。

上面我们偶尔提到了field的概念,我们所说的数据类属性,数据属性实际上都是被field的对象,它代表着一个数据的实体和它的元信息,下面我们了解一下

dataclasses.field

先看下field的原型:

dataclasses.field(*, default=MISSING, default_factory=MISSING, repr=True, hash=None, init=True, compare=True, metadata=None)

通常我们无需直接使用,装饰器会根据我们给出的类型注解自动生成field,但有时候我们也需要定制这一过程,这时`dataclasses.field`就显得格外有用了。

default和default_factory参数将会影响默认值的产生,它们的默认值都是None,意思是调用时如果为指定则产生一个为None的值。其中default是field的默认值,而default_factory控制如何产生值,它接收一个无参数或者全是默认参数的

callable

对象,然后用调用这个对象获得field的初始值,之后再将default(如果值不是MISSING)复制给

callable

返回的这个对象。

举个例子,对于list,当复制它时只是复制了一份引用,所以像dataclass里那样直接复制给实例的做法的危险而错误的,为了保证使用list时的安全性,应该这样做:

@dataclass
class C:
    mylist: List[int] = field(default_factory=list)
           

当初始化

C

的实例时就会调用

list()

而不是直接复制一份list的引用:

>>> c1 = C()
>>> c1.mylist += [1,2,3]
>>> c1.mylist
[1, 2, 3]
>>> c2 = C()
>>> c2.mylist
[]
           

数据污染得到了避免。

init参数如果设置为False,表示不为这个field生成初始化操作,dataclass提供了hook——

__post_init__

供我们利用这一特性:

@dataclass
class C:
    a: int
    b: int
    c: int = field(init=False)

    def __post_init__(self):
        self.c = self.a + self.b
           

__post_init__

__init__

后被调用,我们可以在这里初始化那些需要前置条件的field。

repr参数表示该field是否被包含进repr的输出,compare和hash参数表示field是否参与比较和计算hash值。metadata不被dataclass自身使用,通常让第三方组件从中获取某些元信息时才使用,所以我们不需要使用这一参数。

如果指定一个field的类型注解为

dataclasses.InitVar

,那么这个field将只会在初始化过程中(

__init__

__post_init__

)可以被使用,当初始化完成后访问该field会返回一个

dataclasses.Field

对象而不是field原本的值,也就是该field不再是一个可访问的数据对象。举个例子,比如一个由数据库对象,它只需要在初始化的过程中被访问:

@dataclass
class C:
    i: int
    j: int = None
    database: InitVar[DatabaseType] = None

    def __post_init__(self, database):
        if self.j is None and database is not None:
            self.j = database.lookup('j')

c = C(10, database=my_database)
           

这个例子中会返回

c.i

c.j

的数据,但是不会返回

c.database

的。

`dataclasses`模块中提供了一些常用函数供我们处理数据类。

使用

dataclasses.asdict

dataclasses.astuple

我们可以把数据类实例中的数据转换成字典或者元组:

>>> from dataclasses import asdict, astuple
>>> asdict(Lang())
{'name': 'python', 'strong_type': True, 'static_type': False, 'age': 28}
>>> astuple(Lang())
('python', True, False, 28)
           

dataclasses.is_dataclass

可以判断一个类或实例对象是否是数据类:

>>> from dataclasses import is_dataclass
>>> is_dataclass(Lang)
True
>>> is_dataclass(Lang())
True
           

python3.7引入dataclass的一大原因就在于相比namedtuple,dataclass可以享受继承带来的便利。

dataclass

装饰器会检查当前class的所有基类,如果发现一个dataclass,就会把它的字段按顺序添加进当前的class,随后再处理当前class的field。所有生成的方法也将按照这一过程处理,因此如果子类中的field与基类同名,那么子类将会无条件覆盖基类。子类将会根据所有的field重新生成一个构造函数,并在其中初始化基类。

看个例子:

@dataclass
class Python(Lang):
    tab_size: int = 4
    is_script: bool = True

>>> Python()
Python(name='python', strong_type=True, static_type=False, age=28, tab_size=4, is_script=True)

@dataclass
class Base:
    x: float = 25.0
    y: int = 0

@dataclass
class C(Base):
    z: int = 10
    x: int = 15

>>> C()
C(x=15, y=0, z=10)
           

Lang

的field被

Python

继承了,而

C

中的

x

则覆盖了

Base

中的定义。

没错,数据类的继承就是这么简单。

合理使用dataclass将会大大减轻开发中的负担,将我们从大量的重复劳动中解放出来,这既是dataclass的魅力,不过魅力的背后也总是有陷阱相伴,最后我想提几点注意事项:

- dataclass通常情况下是unhashable的,因为默认生成的`__hash__`是`None`,所以不能用来做字典的key,如果有这种需求,那么应该指定你的数据类为frozen dataclass

- 小心当你定义了和`dataclass`生成的同名方法时会引发的问题

- 当使用可变类型(如list)时,应该考虑使用`field`的`default_factory`

- 数据类的属性都是公开的,如果你有属性只需要初始化时使用而不需要在其他时候被访问,请使用`dataclasses.InitVar`

只要避开这些陷阱,dataclass一定能成为提高生产力的利器。

参考

https://docs.python.org/3.7/library/dataclasses.html

https://www.python.org/dev/peps/pep-0557