天天看点

一文搞懂select、poll和epoll区别(上)1 select

1 select

select本质上是通过设置或检查存放fd标志位的数据结构进行下一步处理。

这带来缺点:

单个进程可监视的fd数量被限制,即能监听端口的数量有限

单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是3232,同理64位机器上FD_SETSIZE为3264),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试

一般该数和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认1024个,64位默认2048。

一文搞懂select、poll和epoll区别(上)1 select

对socket是线性扫描,即轮询,效率较低:

仅知道有I/O事件发生,却不知是哪几个流,只会无差异轮询所有流,找出能读数据或写数据的流进行操作。同时处理的流越多,无差别轮询时间越长 - O(n)。

当socket较多时,每次select都要通过遍历

FD_SETSIZE

个socket,不管是否活跃,这会浪费很多CPU时间。如果能给 socket 注册某个回调函数,当他们活跃时,自动完成相关操作,即可避免轮询,这就是epoll与kqueue。

1.1 调用过程

一文搞懂select、poll和epoll区别(上)1 select
asmlinkage long sys_poll(struct pollfd * ufds, unsigned int nfds, long timeout)
{
    int i, j, fdcount, err;
    struct pollfd **fds;
    struct poll_wqueues table, *wait;
    int nchunks, nleft;

    /* Do a sanity check on nfds ... */
    if (nfds > NR_OPEN)
        return -EINVAL;

    if (timeout) {
        /* Careful about overflow in the intermediate values */
        if ((unsigned long) timeout < MAX_SCHEDULE_TIMEOUT / HZ)
            timeout = (unsigned long)(timeout*HZ+999)/1000+1;
        else /* Negative or overflow */
            timeout = MAX_SCHEDULE_TIMEOUT;
    }
    // 2. 注册回调函数__pollwait
    poll_initwait(&table);
    wait = &table;
    if (!timeout)
        wait = NULL;

    err = -ENOMEM;
    fds = NULL;
    if (nfds != 0) {
        fds = (struct pollfd **)kmalloc(
            (1 + (nfds - 1) / POLLFD_PER_PAGE) * sizeof(struct pollfd *),
            GFP_KERNEL);
        if (fds == NULL)
            goto out;
    }

    nchunks = 0;
    nleft = nfds;
    while (nleft > POLLFD_PER_PAGE) { /* allocate complete PAGE_SIZE chunks */
        fds[nchunks] = (struct pollfd *)__get_free_page(GFP_KERNEL);
        if (fds[nchunks] == NULL)
            goto out_fds;
        nchunks++;
        nleft -= POLLFD_PER_PAGE;
    }
    if (nleft) { /* allocate last PAGE_SIZE chunk, only nleft elements used */
        fds[nchunks] = (struct pollfd *)__get_free_page(GFP_KERNEL);
        if (fds[nchunks] == NULL)
            goto out_fds;
    }

    err = -EFAULT;
    for (i=0; i < nchunks; i++)
        // 
        if (copy_from_user(fds[i], ufds + i*POLLFD_PER_PAGE, PAGE_SIZE))
            goto out_fds1;
    if (nleft) {
        if (copy_from_user(fds[nchunks], ufds + nchunks*POLLFD_PER_PAGE, 
                nleft * sizeof(struct pollfd)))
            goto out_fds1;
    }

    fdcount = do_poll(nfds, nchunks, nleft, fds, wait, timeout);

    /* OK, now copy the revents fields back to user space. */
    for(i=0; i < nchunks; i++)
        for (j=0; j < POLLFD_PER_PAGE; j++, ufds++)
            __put_user((fds[i] + j)->revents, &ufds->revents);
    if (nleft)
        for (j=0; j < nleft; j++, ufds++)
            __put_user((fds[nchunks] + j)->revents, &ufds->revents);

    err = fdcount;
    if (!fdcount && signal_pending(current))
        err = -EINTR;

out_fds1:
    if (nleft)
        free_page((unsigned long)(fds[nchunks]));
out_fds:
    for (i=0; i < nchunks; i++)
        free_page((unsigned long)(fds[i]));
    if (nfds != 0)
        kfree(fds);
out:
    poll_freewait(&table);
    return err;
}      
static int do_poll(unsigned int nfds, unsigned int nchunks, unsigned int nleft, 
    struct pollfd *fds[], struct poll_wqueues *wait, long timeout)
{
    int count;
    poll_table* pt = &wait->pt;

    for (;;) {
        unsigned int i;

        set_current_state(TASK_INTERRUPTIBLE);
        count = 0;
        for (i=0; i < nchunks; i++)
            do_pollfd(POLLFD_PER_PAGE, fds[i], &pt, &count);
        if (nleft)
            do_pollfd(nleft, fds[nchunks], &pt, &count);
        pt = NULL;
        if (count || !timeout || signal_pending(current))
            break;
        count = wait->error;
        if (count)
            break;
        timeout = schedule_timeout(timeout);
    }
    current->state = TASK_RUNNING;
    return count;
}      
  1. 使用copy_from_user从用户空间拷贝fd_set到内核空间
  2. 注册回调函数__pollwait
    一文搞懂select、poll和epoll区别(上)1 select
  3. 遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或datagram_poll)
  4. 以tcp_poll为例,核心实现就是

    __pollwait

    ,即上面注册的回调函数
  5. __pollwait,就是把current(当前进程)挂到设备的等待队列,不同设备有不同等待队列,如tcp_poll的等待队列是sk->sk_sleep(把进程挂到等待队列中并不代表进程已睡眠)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒。
void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *_p)
{
    struct poll_wqueues *p = container_of(_p, struct poll_wqueues, pt);
    struct poll_table_page *table = p->table;

    if (!table || POLL_TABLE_FULL(table)) {
        struct poll_table_page *new_table;

        new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
        if (!new_table) {
            p->error = -ENOMEM;
            __set_current_state(TASK_RUNNING);
            return;
        }
        new_table->entry = new_table->entries;
        new_table->next = table;
        p->table = new_table;
        table = new_table;
    }

    /* 添加新节点 */
    {
        struct poll_table_entry * entry = table->entry;
        table->entry = entry+1;
        get_file(filp);
        entry->filp = filp;
        entry->wait_address = wait_address;
        init_waitqueue_entry(&entry->wait, current);
        add_wait_queue(wait_address,&entry->wait);
    }
}      
static void do_pollfd(unsigned int num, struct pollfd * fdpage,
    poll_table ** pwait, int *count)
{
    int i;

    for (i = 0; i < num; i++) {
        int fd;
        unsigned int mask;
        struct pollfd *fdp;

        mask = 0;
        fdp = fdpage+i;
        fd = fdp->fd;
        if (fd >= 0) {
            struct file * file = fget(fd);
            mask = POLLNVAL;
            if (file != NULL) {
                mask = DEFAULT_POLLMASK;
                if (file->f_op && file->f_op->poll)
                    mask = file->f_op->poll(file, *pwait);
                mask &= fdp->events | POLLERR | POLLHUP;
                fput(file);
            }
            if (mask) {
                *pwait = NULL;
                (*count)++;
            }
        }
        fdp->revents = mask;
    }
}      
  1. poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值
  2. 若遍历完所有fd,还没返回一个可读写的mask掩码,则调schedule_timeout是调用select的进程(也就是current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。若超过一定超时时间(schedule_timeout指定),还没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有无就绪的fd
  3. 把fd_set从内核空间拷贝到用户空间

继续阅读