天天看点

Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

  By: 授客 QQ:1033553122

1.测试环境

python 3.4

zookeeper-3.4.13.tar.gz

下载地址1:

http://zookeeper.apache.org/releases.html#download

https://www.apache.org/dyn/closer.cgi/zookeeper/

https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/

下载地址2:

https://pan.baidu.com/s/1dnBgHvySE9pVRZXJVmezyQ

kafka_2.12-2.1.0.tgz

http://kafka.apache.org/downloads.html

https://pan.baidu.com/s/1VnHkJgy4iQ73j5rLbEL0jw

pykafka-2.8.0.tar.gz

https://pypi.org/project/pykafka/

https://files.pythonhosted.org/packages/55/4b/4828ec5ed766cca0c27de234688122494c5762965e70deeb88b84f5d8d98/pykafka-2.8.0.tar.gz

2.实现功能

实时采集Kafka生产者主题生产速率,主题消费速率,主题分区偏移,消费组消费速率,支持同时对多个来自不同集群的主题进行实时采集,支持同时对多个消费组实时采集

3.使用前提

1、“主题消费速率”&“消费组消费速率” 统计 依赖“消费组”,所以要统计消费速率,必须存在消费组才能统计;

2、“主题消费速率”&“消费组消费速率” 统计 依赖消费者自动、手动提交“offset”,所以所以要统计消费速率,必须确保消费者消费时,会提交消息的offset

3、Kafka版本大于等于0.10.1.1

4.使用方法

influxDB主机配置

KafkaMonitor\conf\influxDB.conf

[INFLUXDB]

influxdb_host = 10.203.25.106

influxdb_port = 8086

brokers集群配置

KafkaMonitor\conf\brokers.conf

[CLUSTER1]

broker1 = 127.0.0.1:9092

[bus]

#broker1 =10.202.xxx.xx:9096,10.202.xx.xx:9096,10.202.xxx.x:9096

格式说明:

[集群名称]

自定义brokers标识 = broker ip:port配置(如果有多个broker,用英文逗号分隔)

如果不想对指定集群进行监控(不监控该集群的主题生产、消费速率,主题分区偏移,消费组消费速率),用 # 号注释掉 该集群的“自定义brokers标识” 所在行即可,如上

topics主题配置

topic1 = MY_TOPIC1

topic1=NEXT_MARM_CORE_REPORT

#topic2=NEXT_MARM_CORE_EVENT

自定义topic 标识 = topic名称

如果不想对指定主题进行监控(不监控该主题的生产、消费速率,主题分区偏移,该主题相关消费组消费速率),用 # 号注释掉 该集群的“自定义 topic标识” 所在行即可,如上

注意:每个集群名称下的 自定义 topic 标识不能重复

consumer_groups消费组配置

KafkaMonitor\conf\consumer_groups.conf

groupID1 = MY_TOPIC1|MY_GROUP1:5000

#groupID1=NEXT_MARM_CORE_EVENT|NEXT_MARM_CORE_TASK

groupID2=NEXT_MARM_CORE_REPORT|NEXT_MARM_CORE_REPORT,NEXT_MARM_CORE_REPORTTAG

自定义consumer_groups 标识 = 主题名称|消费该主题的消费组名称[:提交msg offset的时间间隔(单位为 毫秒)](如果有多个消费组,彼此之间用逗号分隔)

注意:

1、如果有为消费组设置提交msg offset的时间间隔,并且该时间间隔大于统一设置的数据采集频率,那么该消费组的数据采集频率将自动调整为对应的 提交msg offset的时间间隔/1000 + 1

2、主题消费速率的统计依赖消费该主题的所有消费组的数据信息,所以,同一个主题,不要配置在多个“自定义consumer_groups 标识”配置值中

3、主题消费速率数据采集频率取最大值 max(统一设置的数据采集频率,max(消费该主题的消费组提交msg offset的时间间隔/1000 + 1))

如果不想对指定消费组进行监控(不监控该消费组消费速率,消费组关联的主题消费速率),用 # 号注释掉 该集群的“自定义consumer_groups 标识” 所在行即可,如上,,或者把对应消费组及其提交msg offset的时间间隔信息删除即可。

运行程序

python main.py 采集频率(单位 秒) 采集时长

eg:

每5秒采集一次,总共采集120秒

python main.py 5 120

Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

如果(根据配置自动调整后的)采集频率时间间隔大于单次程序采样耗时,则处理完成后立即进行下一次采样,忽略采样频率设置,实际采集时长变长,但是采集次数不变 int(采集时长/采样频率)

grafana图表配置

数据源配置

Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

说明:Database db_+brokers.conf中配置的集群名称

Dashboard变量配置

Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

Dashboard Pannel主要配置项

Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

效果展示

Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

参考链接:

https://pykafka.readthedocs.io/en/latest/index.html

源码下载地址:

https://gitee.com/ishouke/KafkaMonitor

作者:授客

QQ:1033553122

全国软件测试QQ交流群:7156436

Git地址:https://gitee.com/ishouke

友情提示:限于时间仓促,文中可能存在错误,欢迎指正、评论!

作者五行缺钱,如果觉得文章对您有帮助,请扫描下边的二维码打赏作者,金额随意,您的支持将是我继续创作的源动力,打赏后如有任何疑问,请联系我!!!

           微信打赏                       

支付宝打赏                  全国软件测试交流QQ群  

Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控