题目大意:求经过N条边的最短路。
好题,更深刻的理解了Floyd和图邻接矩阵上的乘法。
这个问题和求两点间经过N条边的路径数很相似,而我们知道如果用图的邻接矩阵A存储图的话,二分矩阵快速幂A^N即为所求。路径数能用矩阵乘法求是因为它的状态方程正好和矩阵乘法一样:设dp[i][j][p]表示i到j点经过p条边的路径数,则dp[i][j][p] = sigma(dp[i][k][p-1]*dp[k][j][1]),即A=B*C(把dp[p]看成A,dp[p-1]看成B……);
但显然最短路的方程不是这样的。按照Floyd的方程它应该是dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j])。
那这样的方程能用类似上面的方法求么?答案是肯定的,只要修改一下“乘法”即可。显然,只要矩阵运算符合结合律,那么它就能用二分矩阵快速幂做。关于上面Floyd方程符合结合率的证明,俞华程的论文《矩阵乘法在信息学中的应用》有证明,不过他前面的我没看懂。。。
那么只要我们重新定义下矩阵“乘法”为:C[i][j] = min(C[i][j], A[i][k]+B[k][j]),问题迎刃而解。
假如我们设图的邻接矩阵为VE,则按上面的定义,VE * VE 显然就是两点到达经过两条边所需要的最短路径。然后同理VE ^ N就是到达经过N条边所需要的最短路径。为什么这个很类似Floyd的式子求出来的是确定了经过边数的最短距离?因为这个更新和Floyd不同的是更新到一个新的矩阵上去了而不是直接像Floyd的自己更新自己。所以在一更新时,不会出现自己刚更新的值又来继续更新。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)>>1)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
const int sup = 0x7fffffff;
const int inf = -0x7fffffff;
int hash[1000003], cnt;
struct mat{
long long map[200][200];
void init(){
mem(map, -1);
}
void make_head(){
mem(map, -1);
for (int i = 0; i < cnt; i ++)
map[i][i] = 0;
}
}A;
int n, t, s, e;
mat floyd(mat &A, mat &B){
mat res;
res.init();
for (int k = 0; k < cnt; k ++){
for (int i = 0; i < cnt; i ++){
if (A.map[i][k] != -1){
for (int j = 0; j < cnt; j ++){
if(B.map[k][j] != -1){
if (res.map[i][j] == -1){
res.map[i][j] = A.map[i][k] + B.map[k][j];
}
else{
res.map[i][j] = min(res.map[i][j], A.map[i][k] + B.map[k][j]);
}
}
}
}
}
}
return res;
}
long long work(mat &A, int n){
mat res;
res.make_head();
while(n){
if (n & 1){
res = floyd(res, A);
}
n >>= 1;
A = floyd(A, A);
}
return res.map[hash[s]][hash[e]];
}
int main(){
mem(hash, -1);
A.init();
cnt = 0;
scanf("%d %d %d %d", &n, &t, &s, &e);
if (hash[s] == -1)
hash[s] = cnt ++;
if (hash[e] == -1)
hash[e] = cnt ++;
for (int i = 0; i < t; i ++){
int l, a, b;
scanf("%d %d %d", &l, &a, &b);
if (hash[a] == -1)
hash[a] = cnt ++;
if (hash[b] == -1)
hash[b] = cnt ++;
A.map[hash[a]][hash[b]] = l;
A.map[hash[b]][hash[a]] = l;
}
printf("%I64d\n", work(A, n));
return 0;
}
举杯独醉,饮罢飞雪,茫然又一年岁。 ------AbandonZHANG