天天看点

前缀和后缀表达式

后缀表达式

后缀表达式,又称逆波兰式,指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则)。

运用后缀表达式进行计算的具体做法:

建立一个栈S 。从左到右读表达式,如果读到操作数就将它压入栈S中,如果读到n元运算符(即需要参数个数为n的运算符)则取出由栈顶向下的n项按操作数运算,再将运算的结果代替原栈顶的n项,压入栈S中 。如果后缀表达式未读完,则重复上面过程,最后输出栈顶的数值则为结束。

计算机实现转换:

将中缀表达式转换为后缀表达式的算法思想:

·开始扫描;

·数字时,加入后缀表达式;

·运算符:

a. 若为 '(',入栈;

b. 若为 ')',则依次把栈中的的运算符加入后缀表达式中,直到出现'(',从栈中删除'(' ;

c. 若为 除括号外的其他运算符, 当其优先级高于除'('以外的栈顶运算符时,直接入栈。否则从栈顶开始,依次弹出比当前处理的运算符优先级高和优先级相等的运算符,直到一个比它优先级低的或者遇到了一个左括号为止,然后将其自身压入栈中(先出后入)。

·当扫描的中缀表达式结束时,栈中的的所有运算符出栈;

人工实现转换:画一个二叉树,然后后序遍历即可。

前缀表达式

前缀表达式是一种没有括号的算术表达式,与中缀表达式不同的是,其将运算符写在前面,操作数写在后面。为纪念其发明者波兰数学家Jan Lukasiewicz,前缀表达式也称为“波兰式”。

对前缀表达式求值,要从右至左扫描表达式,首先从右边第一个字符开始判断,若当前字符是数字则一直到数字串的末尾再记录下来,若为运算符,则将右边离得最近的两个“数字串”作相应运算,然后以此作为一个新的“数字串”并记录下来;扫描到表达式最左端时扫描结束,最后运算的值即为表达式的值。