我从零开始训练了GoogLeNet模型。 但它没有给我带来希望的结果。
作为替代,我想对我的数据集中的GoogLeNet模型进行微调。 有谁知道我应该遵循什么步骤?
采纳答案:
假设你正在尝试做图像分类。 这些应该是微调模型的步骤:
1.分类层
原始分类层"loss3/classifier"输出1000个类的预测(它的
mum_output
设置为1000)。 您需要将其替换为具有适当
num_output
的新图层。 替换分类层:
- 更改图层的名称(以便当您从caffemodel文件读取原始权重时,不会与此图层的权重发生冲突)。
- 将
更改为您尝试预测的正确数量的输出类。num_output
- 请注意,您需要更改所有分类图层。 通常只有一个,但是GoogLeNet碰巧有三个: "loss1/classifier" , "loss2/classifier"和"loss3/classifier" 。
2.数据
您需要创建一个新的训练数据集,其中包含您想要调整的新标签。 例如,请参阅这篇文章 ,了解如何制作lmdb数据集。
3.你想要进行多少广泛的调谐?
微调模型时,可以训练所有模型的权重,或者选择修正一些权重(通常是较低/较深层次的过滤器),并仅训练最顶层的权重。 这个选择取决于你,它通常取决于可用的训练数据量(更多的例子你可以承受更多的权重,可以进行微调)。
每个图层(包含可训练参数)都有
param { lr_mult: XX }
。 这个系数决定了这些权重对SGD更新的敏感程度。 设置
param { lr_mult: 0 }
意味着你修改这个图层的权重,并且在训练过程中它们不会被改变。
相应地编辑您的
train_val.prototxt
。
4.运行咖啡
运行
caffe train
但提供caffemodel的重量作为初始重量:
~$ $CAFFE_ROOT/build/tools/caffe train -solver /path/to/solver.ptototxt -weights /path/to/orig_googlenet_weights.caffemodel
更多答案请参考GoogLeNet模型的微调。版权归stackoverflow所有,转载请保留此链接 GoogLeNet模型的微调