目录
- 第十章:主成分模型与 VaR 分析
- 思维导图
- 一些想法
- 推导 PCD、PCC 和 KRD、KRC 的关系
- PCD 和 KRD
- PCC 和 KRC
- NS 家族模型的参数有经济意义,同时参数变化的行为类似主成分,考虑基于 NS 模型参数的风险度量。
- 尝试用(多元)GARCH 滤波利率变化,对残差应用 PCA。
利用主成分系数矩阵的正交性。
\[\begin{aligned}
PCD(i) &= -\frac{1}{P} \frac{\partial P}{\partial c^*_i}\\&= -\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i}\\
&=-\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i} \sum_{j=1}^k \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \frac{\partial c_i}{\partial y(t_j)} \mu_{ij}\\
&=- \sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial y(t_j)} \mu_{ij}\\
&=\sqrt{\lambda_i}\sum_{j=1}^k KRD(j) \mu_{ij}\\
&=\sum_{j=1}^k KRD(j) l_{ji}
\end{aligned}
\]
PCC(i,j) &= -\frac{1}{P} \frac{\partial^2 P}{\partial c^*_i \partial c^*_j}\\
&=-\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \frac{\partial^2 P}{\partial c_i \partial c_j}\\
其中
\frac{\partial^2 P}{\partial c_i \partial c_j}&=
\frac{\partial\left(\frac{\partial P}{\partial c_i}\right)}{\partial c_j}\\
&=\frac{\partial\left(\sum_{l=1}^k \frac{\partial P}{\partial y(t_l)} \mu_{il}\right)}{\partial c_j}\\
&=\sum_{l=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{il}\\
又有
\frac{\partial^2 P}{\partial y(t_l) \partial c_j}&=
\frac{\partial^2 P}{\partial y(t_l) \partial c_j} \sum_{n=1}^k \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \frac{\partial c_j}{\partial y(t_n)} \mu_{jn}\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn}\\
所以
\sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}
最终
PCC(i,j) &= -\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}\\
&=\sum_{l=1}^k \sum_{n=1}^k KRC(l,n) l_{nj}l_{li}
★ 持续学习 ★ 坚持创作 ★