天天看点

51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理

​​题目传送门 - 51Nod1518​​题意

51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理

51Nod真是个好OJ ,题意概括的真好,有助于博主偷懒不写题意概括。给51Nod 点赞!

题解

  首先,我们忽略那个“稳定”的要求,求方案数。

  显然是一个插头dp裸题,我们可以在 $O(n^2\cdot 2^n)$ 的时间复杂度中求出所有长宽的矩形区域的覆盖方案数。

  然后我们考虑容斥原理,奇加偶减。首先,枚举哪些相邻行之间有一条不穿过骨牌的直线,然后,用一个 $O(n)$ DP 来解决相邻列之间分割线的容斥。

  总的时间复杂度 $O(n^22^n)$ 。打出表之后,询问 $O(1)$ 。

代码

看着那些运行效率榜上15MS的代码我于是交了一份 0MS 的代码。正常的代码在这份代码之后。

#include <bits/stdc++.h>
int n,m,ans[17][17]={
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,6,0,108,0,1182,0,10338,0,79818,0,570342},
{0,0,0,0,0,6,0,124,62,1646,1630,18120,25654,180288,317338,1684956,3416994},
{0,0,0,0,0,0,124,0,13514,0,765182,0,32046702,0,136189727,0,378354090},
{0,0,0,0,0,108,62,13514,25506,991186,3103578,57718190,238225406,965022920,388537910,937145938,315565230},
{0,0,0,0,0,0,1646,0,991186,0,262834138,0,462717719,0,560132342,0,699538539},
{0,0,0,0,0,1182,1630,765182,3103578,262834138,759280991,264577134,712492587,886997066,577689269,510014880,807555438},
{0,0,0,0,0,0,18120,0,57718190,0,264577134,0,759141342,0,567660301,0,47051173},
{0,0,0,0,0,10338,25654,32046702,238225406,462717719,712492587,759141342,398579168,83006813,821419653,942235780,558077885},
{0,0,0,0,0,0,180288,0,965022920,0,886997066,0,83006813,0,690415372,0,620388364},
{0,0,0,0,0,79818,317338,136189727,388537910,560132342,577689269,567660301,821419653,690415372,796514774,696587391,175421667},
{0,0,0,0,0,0,1684956,0,937145938,0,510014880,0,942235780,0,696587391,0,856463275},
{0,0,0,0,0,570342,3416994,378354090,315565230,699538539,807555438,47051173,558077885,620388364,175421667,856463275,341279366}
};
int main(){
  while (~scanf("%d%d",&n,&m))
    printf("%d\n",ans[n][m]);
  return 0;
}
      

  

正常的代码

#include <bits/stdc++.h>
using namespace std;
int read(){
  int x=0;
  char ch=getchar();
  while (!isdigit(ch))
    ch=getchar();
  while (isdigit(ch))
    x=(x<<1)+(x<<3)+ch-48,ch=getchar();
  return x;
}
const int N=17,S=1<<16,mod=1e9+7;
int n,m,dp[2][S],tot[N][N],ans[N][N];
int gbit(int v,int d){
  return (v>>(d-1))&1;
}
void Solve_tot(int n,int m){
  memset(dp,0,sizeof dp);
  int T0=1,T1=0;
  dp[T1][(1<<m)-1]=1;
  for (int i=1;i<=n;i++){
    for (int j=1;j<=m;j++){
      T0^=1,T1^=1;
      memset(dp[T1],0,sizeof dp[T1]);
      for (int s=0;s<(1<<m);s++){
        int v=dp[T0][s];
        if (!v)
          continue;
        dp[T1][s^(1<<(j-1))]=(dp[T1][s^(1<<(j-1))]+v)%mod;
        if (j>1&&!gbit(s,j-1)&&gbit(s,j)){
          int _s=s^(1<<(j-2));
          dp[T1][_s]=(dp[T1][_s]+v)%mod;
        }
      }
    }
    tot[i][m]=dp[T1][(1<<m)-1];
  }
}
void Get_tot(int n){
  for (int m=1;m<=16;m++)
    Solve_tot(n,m);
}
int GetV(int n,int s,int len){
  int v=1;
  for (int i=1,j;i<=n;i=j){
    for (j=i;j<n&&!((s>>j)&1);j++);
    j++;
    v=1LL*v*tot[j-i][len]%mod;
  }
  return v;
}
int cnt_1(int v){
  int ans=0;
  while (v)
    ans+=v&1,v>>=1;
  return ans;
}
void Solve_ans(int n,int m){
  int dp[N],v[N];
  for (int s=0;s<(1<<n);s++){
    if (!(s&1))
      continue;
    memset(dp,0,sizeof dp);
    for (int i=1;i<=m;i++)
      v[i]=GetV(n,s,i);
    dp[0]=1;
    for (int i=1;i<=m;i++)
      for (int j=0;j<i;j++)
        dp[i]=(-1LL*dp[j]*v[i-j]+dp[i])%mod;
    int f=(cnt_1(s)&1)?-1:1;
    for (int i=1;i<=m;i++)
      ans[n][i]=(ans[n][i]+f*dp[i])%mod;
  }
}
void Get_ans(int m){
  memset(ans,0,sizeof ans);
  for (int n=1;n<=16;n++)
    Solve_ans(n,m);
  for (int i=1;i<=m;i++)
    for (int j=1;j<=m;j++)
      ans[i][j]=(ans[i][j]+mod)%mod;
}
int main(){
  Get_tot(16);
  Get_ans(16);
  while (~scanf("%d%d",&n,&m))
    printf("%d\n",ans[n][m]);
  return 0;
}