1. 什么是垃圾
在提到什么是垃圾之前,我们先看下面一张图
从上图我们可以很明确的知道,Java 和 C++语言的区别,就在于垃圾收集技术和内存动态分配上,C语言没有垃圾收集技术,需要我们手动的收集。垃圾收集,不是Java语言的伴生产物。早在1960年,第一门开始使用内存动态分配和垃圾收集技术的Lisp语言诞生。 关于垃圾收集有三个经典问题:
- 哪些内存需要回收?
- 什么时候回收?
- 如何回收?
垃圾收集机制是Java的招牌能力,极大地提高了开发效率。如今,垃圾收集几乎成为现代语言的标配,即使经过如此长时间的发展,Java的垃圾收集机制仍然在不断的演进中,不同大小的设备、不同特征的应用场景,对垃圾收集提出了新的挑战。
1.1 什么是垃圾?
垃圾是指在运行程序中没有任何指针指向的对象,这个对象就是需要被回收的垃圾。如果不及时对内存中的垃圾进行清理,那么,这些垃圾对象所占的内存空间会一直保留到应用程序的结束,被保留的空间无法被其它对象使用,甚至可能导致内存溢出。
2. 为什么需要GC
对于高级语言来说,一个基本认知是如果不进行垃圾回收,内存迟早都会被消耗完,因为不断地分配内存空间而不进行回收,就好像不停地生产生活垃圾而从来不打扫一样。
除了释放没用的对象,垃圾回收也可以清除内存里的记录碎片。碎片整理将所占用的堆内存移到堆的一端,以便JVM将整理出的内存分配给新的对象。
随着应用程序所应付的业务越来越庞大、复杂,用户越来越多,没有GC就不能保证应用程序的正常进行。而经常造成STW的GC又跟不上实际的需求,所以才会不断地尝试对GC进行优化。
3. 早期垃圾回收
在早期的C/C++时代,垃圾回收基本上是手工进行的。开发人员可以使用new关键字进行内存申请,并使用delete关键字进行内存释放。这种方式可以灵活控制内存释放的时间,但是会给开发人员带来频繁申请和释放内存的管理负担。倘若有一处内存区间由于程序员编码的问题忘记被回收,那么就会产生内存泄漏,垃圾对象永远无法被清除,随着系统运行时间的不断增长,垃圾对象所耗内存可能持续上升,直到出现内存溢出并造成应用程序崩溃。
4. Java垃圾回收机制
4.1 优点
自动内存管理,无需开发人员手动参与内存的分配与回收,这样降低内存泄漏和内存溢出的风险。如果没有自动垃圾回收机制,java也会和c语音一样,各种悬垂指针,野指针,泄露问题让你头疼不已。自动内存管理机制,将程序员从繁重的内存管理中释放出来,可以更专心地专注于业务开发
4.2 缺点
对于Java开发人员而言,自动内存管理就像是一个黑匣子,如果过度依赖于“自动”,那么这将会是一场灾难,最严重的就会弱化Java开发人员在程序出现内存溢出时定位问题和解决问题的能力。
此时,了解JVM的自动内存分配和内存回收原理就显得非常重要,只有在真正了解JVM是如何管理内存后,我们才能够在遇见outofMemoryError时,快速地根据错误异常日志定位问题和解决问题。
当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。
4.3 GC主要关注的区域
GC主要关注于 方法区 和堆中的垃圾收集
垃圾收集器可以对年轻代回收,也可以对老年代回收,甚至是全栈和方法区的回收
- 其中,Java堆是垃圾收集器的工作重点
从次数上讲:
- 频繁收集Young区
- 较少收集Old区
- 基本不收集Perm区(元空间)
5. System.gc()的理解
在默认情况下,通过system.gc()者Runtime.getRuntime().gc() 的调用,会显式触发FullGC,同时对老年代和新生代进行回收,尝试释放被丢弃对象占用的内存。
然而system.gc() )调用附带一个免责声明,无法保证对垃圾收集器的调用。(不能确保立即生效)
JVM实现者可以通过system.gc() 调用来决定JVM的GC行为。而一般情况下,垃圾回收应该是自动进行的,无须手动触发,否则就太过于麻烦了。在一些特殊情况下,如我们正在编写一个性能基准,我们可以在运行之间调用System.gc()。
6. 内存溢出
内存溢出相对于内存泄漏来说,尽管更容易被理解,但是同样的,内存溢出也是引发程序崩溃的罪魁祸首之一。
由于GC一直在发展,所有一般情况下,除非应用程序占用的内存增长速度非常快,造成垃圾回收已经跟不上内存消耗的速度,否则不太容易出现OOM的情况。
大多数情况下,GC会进行各种年龄段的垃圾回收,实在不行了就放大招,来一次独占式的FullGC操作,这时候会回收大量的内存,供应用程序继续使用。
首先说没有空闲内存的情况:说明Java虚拟机的堆内存不够。原因有二:
- Java虚拟机的堆内存设置不够。
比如:可能存在内存泄漏问题;也很有可能就是堆的大小不合理,比如我们要处理比较可观的数据量,但是没有显式指定JVM堆大小或者指定数值偏小。我们可以通过参数-Xms 、-Xmx来调整。
- 代码中创建了大量大对象,并且长时间不能被垃圾收集器收集(存在被引用)
在抛出OutofMemoryError之前,通常垃圾收集器会被触发,尽其所能去清理出空间。当然,也不是在任何情况下垃圾收集器都会被触发的。比如,我们去分配一个超大对象,类似一个超大数组超过堆的最大值,JVM可以判断出垃圾收集并不能解决这个问题,所以直接抛出OutofMemoryError。
7. 内存泄漏
也称作“存储渗漏”。严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。
但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致00M,也可以叫做宽泛意义上的“内存泄漏”。
尽管内存泄漏并不会立刻引起程序崩溃,但是一旦发生内存泄漏,程序中的可用内存就会被逐步蚕食,直至耗尽所有内存,最终出现outofMemory异常,导致程序崩溃。
7.1 举例
- 单例模式
单例的生命周期和应用程序是一样长的,所以单例程序中,如果持有对外部对象的引用的话,那么这个外部对象是不能被回收的,则会导致内存泄漏的产生。
- 一些提供close的资源未关闭导致内存泄漏
数据库连接(dataSourse.getConnection() ),网络连接(socket)和io连接必须手动close,否则是不能被回收的。
8. 对象已死?
堆里几乎存放着java中所有的实例对象,在对堆进行回收前,第一件事情就是要确定这些对象有哪些还 "存活" 着 ?哪些已经 "死去" (不可能再被任何途径使用的对象)。
8.1 引用计数算法
给对象中增加一个引用计数器,每当一个地方引用它时,计数器值就加1;当引用失效,计数器值就建1;计算器为0的对象就是不可能再被使用的。
引用计数算法的实现简单,判断效率也很高,但是它很难解决对象之间的相互循环引用的问题。所以Java没有选用引用计数算法来管理内存。
8.2 根搜索算法
通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索的路径称为引用链,当一个对象到“GC Roots”没有任何引用链相连的话,也就是GC Roots到这个对象不可达时,证明此对象已经不可用,可以被回收了。
可作为GC roots的对象的包括下面几种:
- 栈中的对象引用、
- 方法区中常量的引用、
- 方法区中静态对象的引用、
- 本地方法区中native对象的引用
9. Stop The World
stop-the-world,简称STW,指的是GC事件发生过程中,会产生应用程序的停顿。停顿产生时整个应用程序线程都会被暂停,没有任何响应,有点像卡死的感觉,这个停顿称为STW。
可达性分析算法中枚举根节点(GC Roots)会导致所有Java执行线程停顿。
被STW中断的应用程序线程会在完成GC之后恢复,频繁中断会让用户感觉像是网速不快造成电影卡带一样,所以我们需要减少STW的发生。
STW事件和采用哪款GC垃圾回收器无关所有的GC都有这个事件。哪怕是G1也不能完全避免Stop-the-world情况发生,只能说垃圾回收器越来越优秀,回收效率越来越高,尽可能地缩短了暂停时间。
STW是JVM在后台自动发起和自动完成的。在用户不可见的情况下,把用户正常的工作线程全部停掉。开发中不要用system.gc() 会导致stop-the-world的发生。
10. 安全点与安全区域
通过上文我们知道 HotSpot 虚拟机采取的是可达性分析算法。即通过 GC Roots 枚举判定待回收的对象。那么,首先要找到哪些是 GC Roots。有两种查找 GC Roots 的方法:
- 一种是遍历方法区和栈区查找(保守式 GC)。
- 一种是通过 OopMap 数据结构来记录 GC Roots 的位置(准确式 GC)。
保守式 GC 的成本太高。准确式 GC 的优点就是能够让虚拟机快速定位到 GC Roots。对应 OopMap 的位置即可作为一个安全点(Safe Point)。在执行 GC 操作时,所有的工作线程必须停顿,这就是所谓的”Stop-The-World”。
为什么呢?
因为可达性分析算法必须是在一个确保一致性的内存快照中进行。如果在分析的过程中对象引用关系还在不断变化,分析结果的准确性就不能保证。安全点意味着在这个点时,所有工作线程的状态是确定的,JVM 就可以安全地执行 GC 。
10.1 安全点
程序执行时并非在所有地方都能停顿下来开始GC,只有在特定的位置才能停顿下来开始GC,这些位置称为“安全点(Safepoint)”。
Safe Point的选择很重要,如果太少可能导致GC等待的时间太长,如果太频繁可能导致运行时的性能问题。大部分指令的执行时间都非常短暂,通常会根据“是否具有让程序长时间执行的特征”为标准。
比如:选择一些执行时间较长的指令作为Safe Point,如方法调用、循环跳转和异常跳转等。
如何在gc发生时,检查所有线程都跑到最近的安全点停顿下来呢?
- 抢先式中断:(目前没有虚拟机采用)首先中断所有线程。如果还有线程不在安全点,就恢复线程,让线程跑到安全点。
- 主动式中断:设置一个中断标志,各个线程运行到Safe Point的时候主动轮询这个标志,如果中断标志为真,则将自己进行中断挂起。(有轮询的机制)
注意:程序运行到安全点,不是一定要进行垃圾回收。而是在这些点上进行垃圾回收,较为安全。所以叫做安全点。
10.2 安全区域
Safepoint 机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?例如线程处于sleep-状态或Blocked 状态,这时候线程无法响应JVM的中断请求,“走”到安全点去中断挂起,JVM也不太可能等待线程被唤醒。对于这种情况,就需要安全区域(Safe Region)来解决。
安全区域是指在一段代码片段中,对象的引用关系不会发生变化,在这个区域中的任何位置开始Gc都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。
执行流程:
- 当线程运行到Safe Region的代码时,首先标识已经进入了Safe Relgion,如果这段时间内发生GC,JVM会忽略标识为Safe Region状态的线程
- 当线程即将离开Safe Region时,会检查JVM是否已经完成GC,如果完成了,则继续运行,否则线程必须等待直到收到可以安全离开Safe Region的信号为止。
11. 强引用、软引用、虚引用、弱引用
11.1 强引用
当内存不足,jvm开始垃圾回收,对于强引用的对象,就算是出现了OOM也不会对该对象进行回收。这也是Java中最常见的普通对象的引用,只要还有强引用指向这个对象,就不会被垃圾回收。
当这个对象没有了其他的引用关系,只要是超过了引用的作用域,或者显示的将强引用赋值为null,一般就可以进行垃圾回收了。
11.2 软引用
软引用是相对强引用弱化了一些的引用,对于软引用的对象来说:
- 当内存充足时,它不会被回收。
- 当内存不足时。会被回收。
通常用在对内存敏感的程序中,就像高速缓存。
11.3 弱引用
发现即回收
弱引用也是用来描述那些非必需对象,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。在系统GC时,只要发现弱引用,不管系统堆空间使用是否充足,都会回收掉只被弱引用关联的对象。但是,由于垃圾回收器的线程通常优先级很低,因此,并不一定能很快地发现持有弱引用的对象。在这种情况下,弱引用对象可以存在较长的时间。
弱引用和软引用一样,在构造弱引用时,也可以指定一个引用队列,当弱引用对象被回收时,就会加入指定的引用队列,通过这个队列可以跟踪对象的回收情况。
软引用、弱引用都非常适合来保存那些可有可无的缓存数据。如果这么做,当系统内存不足时,这些缓存数据会被回收,不会导致内存溢出。而当内存资源充足时,这些缓存数据又可以存在相当长的时间,从而起到加速系统的作用。
在JDK1.2版之后提供了WeakReference类来实现弱引用
// 声明强引用
Object obj = new Object();
// 创建一个弱引用
WeakReference<Object> sf = new WeakReference<>(obj);
obj = null; //销毁强引用,这是必须的,不然会存在强引用和弱引用
弱引用对象与软引用对象的最大不同就在于,当GC在进行回收时,需要通过算法检查是否回收软引用对象,而对于弱引用对象,GC总是进行回收。弱引用对象更容易、更快被GC回收。
开发中使用过WeakHashMap的场景?
WeakHashMap用来存储图片信息,可以在内存不足的时候,及时回收,避免了OOM
11.4 虚引用
也称为“幽灵引用”或者“幻影引用”,是所有引用类型中最弱的一个一个对象是否有虚引用的存在,完全不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它和没有引用几乎是一样的,随时都可能被垃圾回收器回收。它不能单独使用,也无法通过虚引用来获取被引用的对象。当试图通过虚引用的get()方法取得对象时,总是null。为一个对象设置虚引用关联的唯一目的在于跟踪垃圾回收过程。比如:能在这个对象被收集器回收时收到一个系统通知。
虚引用必须和引用队列一起使用。虚引用在创建时必须提供一个引用队列作为参数。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象后,将这个虚引用加入引用队列,以通知应用程序对象的回收情况。由于虚引用可以跟踪对象的回收时间,因此,也可以将一些资源释放操作放置在虚引用中执行和记录。
在JDK1.2版之后提供了PhantomReference类来实现虚引用。
// 声明强引用
Object obj = new Object();
// 声明引用队列
ReferenceQueue phantomQueue = new ReferenceQueue();
// 声明虚引用(还需要传入引用队列)
PhantomReference<Object> sf = new PhantomReference<>(obj, phantomQueue);
obj = null;