天天看点

高可用环境搭建hadoop配置zookeeper,hdfs,yarn启动

文章目录

    • 软件包,hadoop用户准备
    • 多台机器无密码访问(传文件需要输入密码麻烦)
    • zookeeper部署
  • hadoop配置
    • core-site
    • hdfs-site
    • slaves
    • mapred-site
    • yarn-site
  • zookeeper,hdfs,yarn启动
    • 启动hadoop
    • web界面查看
    • 启动和停止集群顺序

软件包,hadoop用户准备

此次实验使用阿里云3台云主机,指令前没有机名的是对3台机同时做操作。

对于三台机都创建hadoop用户作为我们高可用环境的用户,在software下放软件包

[[email protected] ~]# useradd hadoop
[[email protected] ~]# su - hadoop
[[email protected] ~]$ mkdir software app data lib source
[[email protected] ~]$ ll
total 20
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 app     放安装好的软件
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 data    测试数据
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 lib       依赖包
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 software    软件安装包
drwxrwxr-x 2 hadoop hadoop 4096 Nov 26 16:30 source       源代码

           

接下来上传win下载的软件包到linux,上传要用rz指令,安装这个指令要在root用户下

[[email protected] ~]# yum install -y lrzsz
[[email protected] ~]$ rz
[[email protected] ~]$ mv hadoop-2.6.0-cdh5.7.0.tar.gz jdk-8u45-linux-x64.gz zookeeper-3.4.6.tar.gz ./software/

           

其他机器也要上传这些安装包,先查看另外两台机的ip

[[email protected] ~]$ hostname -i
172.26.165.126
[[email protected] ~]$ hostname
hadoop002

 上传到该ip的root用户下的目录里,如果不指定,就是hadoop(就是取数据源当前操作用户)
[[email protected] software]$ scp * [email protected]:/home/hadoop/software/
 上传到hadoop003
[[email protected] software]$ scp * [email protected]:/home/hadoop/software/
           

3台机安装包所属的用户是root,修改为hadoop

exit 退出到root
 更改包用户和用户组
chown -R hadoop:hadoop /home/hadoop/software/*
 清屏
clear
           

配置etc/hosts

[[email protected] ~]# vi /etc/hosts
 配置结果如下图所示,就是把3台机的ip和机器名的对应关系写在一个文件里。
 然后传给另外两台机器
[[email protected] ~]# scp /etc/hosts 172.26.165.126:/etc/hosts
[[email protected] ~]# scp /etc/hosts 172.26.165.128:/etc/hosts
           
高可用环境搭建hadoop配置zookeeper,hdfs,yarn启动

多台机器无密码访问(传文件需要输入密码麻烦)

su - hadoop
 
rm -rf .ssh
3台机器生成密钥文件
ssh-keygen

 进入密钥路径
 cd .ssh
[[email protected] .ssh]$ ll
total 8
-rw------- 1 hadoop hadoop 1671 Nov 26 18:24 id_rsa
-rw-r--r-- 1 hadoop hadoop  398 Nov 26 18:24 id_rsa.pub

 选hadoop001作为主机,把另外两台机的公钥文件发到主机
 [[email protected] .ssh]$ scp id_rsa.pub [email protected]:/home/hadoop/.ssh/id_rsa.pub2
[[email protected] .ssh]$ scp id_rsa.pub [email protected]:/home/hadoop/.ssh/id_rsa.pub3

[[email protected] .ssh]$ ll
total 16
-rw------- 1 hadoop hadoop 1671 Nov 26 18:24 id_rsa
-rw-r--r-- 1 hadoop hadoop  398 Nov 26 18:24 id_rsa.pub
-rw-r--r-- 1 root   root    398 Nov 26 18:44 id_rsa.pub2
-rw-r--r-- 1 root   root    398 Nov 26 18:45 id_rsa.pub3

 汇集3机生成一个密钥
[[email protected] .ssh]$ cat id_rsa.pub >> authorized_keys
[[email protected] .ssh]$ cat id_rsa.pub2 >> authorized_keys
[[email protected] .ssh]$ cat id_rsa.pub3 >> authorized_keys

 将生成的这个3机密钥传到另外两台机
[[email protected] .ssh]$ scp authorized_keys [email protected]:/home/hadoop/.ssh/
[[email protected] .ssh]$ scp authorized_keys [email protected]:/home/hadoop/.ssh/

 改权限用户组
exit  退回到root用户
chown -R hadoop:hadoop /home/hadoop/.ssh/*
chown -R hadoop:hadoop /home/hadoop/.ssh
su - hadoop
cd .ssh
 3机密钥权限修改
chmod 600 authorized_keys

 确认互相信任关系,相当于登陆到那台机,执行date
 ssh hadoop001 date
 ssh hadoop002 date
 ssh hadoop003 date
           

部署java

exit  到root用户

 建立java存放的文件夹,然后解压过来
 mkdir /usr/java
 tar -xzvf /home/hadoop/software/jdk-8u45-linux-x64.gz -C /usr/java
 
 注意要修改解压后的java用户和用户组
 [[email protected] java]# chown -R root:root /usr/java/jdk1.8.0_45

 配置java环境变量
 vi /etc/profile
 
 #env
export JAVA_HOME=/usr/java/jdk1.8.0_45
export PATH=$JAVA_HOME/bin:$PATH

 然后
[[email protected] java]# source /etc/profile
[[email protected] java]# java -version
           

解压hadoop和zookeeper

su - hadoop
cd software
tar -xzvf hadoop-2.6.0-cdh5.7.0.tar.gz -C ../app/
tar -xzvf zookeeper-3.4.6.tar.gz -C ../app/

           

修改hadoop目录

cd   返回家目录
vi .bash_profile

export HADOOP_HOME=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0
export ZOOKEEPER_HOME=/home/hadoop/app/zookeeper-3.4.6
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZOOKEEPER_HOME/bin:$PATH

source .bash_profile

 看看能不能切,能切说明正常
cd $HADOOP_HOME

 建几个文件夹
mkdir $HADOOP_HOME/data  && mkdir $HADOOP_HOME/logs &&mkdir $HADOOP_HOME/tmp

hadoop临时目录
chmod -R 777 $HADOOP_HOME/tmp

           

zookeeper部署

cd zookeeper-3.4.6/
cd conf
cp zoo_sample.cfg zoo.cfg

[[email protected] conf]$ vi zoo.cfg

 dataDir是日志问夹路径
dataDir=/home/hadoop/app/zookeeper-3.4.6/data
zookeeper集群所在设置,server.1,1代表id,就是下面myid设置的,2888端口和3888端口,内部通信端口,zookeeper之间互相访问,core-site里面是外部组建访问端口
server.1=hadoop001:2888:3888
server.2=hadoop002:2888:3888
server.3=hadoop003:2888:3888

[[email protected] conf]$ scp zoo.cfg hadoop002:/home/hadoop/app/zookeeper-3.4.6/conf/
[[email protected] conf]$ scp zoo.cfg hadoop003:/home/hadoop/app/zookeeper-3.4.6/conf/

 呼应上面的zoo.cfg,配置机器对应的zookeeperid
 cd ../
 mkdir data
 touch data/myid
 注意>左边要有空格
 [[email protected] zookeeper-3.4.6]$ echo 1 >data/myid
 [[email protected] zookeeper-3.4.6]$ echo 2 >data/myid
 [[email protected] zookeeper-3.4.6]$ echo 3 >data/myid
           

hadoop配置

cd hadoop-2.6.0-cdh5.7.0/etc/hadoop

hadoop依赖的java环境
[[email protected] hadoop]$ vi hadoop-env.sh

export JAVA_HOME=/usr/java/jdk1.8.0_45

[[email protected] hadoop]$ scp hadoop-env.sh hadoop002:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop
[[email protected] hadoop]$ scp hadoop-env.sh hadoop003:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop

 先删了
rm -f slaves core-site.xml hdfs-site.xml yarn-site.xml
 然后都rz 5个文件,文件配置如下
           

core-site

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow" ?>
<configuration>
	<!--Yarn 需要使用 fs.defaultFS 指定NameNode URI -->
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://ruozeclusterg5</value>
        </property>
        <!--==============================Trash机制======================================= -->
        <property>
                <!--回收站,多长时间创建CheckPoint NameNode截点上运行的CheckPointer 从Current文件夹创建CheckPoint;默认:0 由fs.trash.interval项指定 -->
                <name>fs.trash.checkpoint.interval</name>
                <value>0</value>
        </property>
        <property>
                <!--回收站,多少分钟.Trash下的CheckPoint目录会被删除,该配置服务器设置优先级大于客户端,默认:0 不删除 -->
                <name>fs.trash.interval</name>
                <value>1440</value>
        </property>

         <!--指定hadoop临时目录, hadoop.tmp.dir 是hadoop文件系统依赖的基础配置,很多路径都依赖它。如果hdfs-site.xml中不配 置namenode和datanode的存放位置,默认就放在这>个路径中 -->
        <property>   
                <name>hadoop.tmp.dir</name>
                <value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/tmp</value>
        </property>

         <!-- 指定zookeeper地址 -->
        <property>
                <name>ha.zookeeper.quorum</name>
                <value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
        </property>
         <!--指定ZooKeeper超时间隔,单位毫秒 -->
        <property>
                <name>ha.zookeeper.session-timeout.ms</name>
                <value>2000</value>
        </property>

        <property>
           <name>hadoop.proxyuser.hadoop.hosts</name>
           <value>*</value> 
        </property> 
        <property> 
            <name>hadoop.proxyuser.hadoop.groups</name> 
            <value>*</value> 
       </property> 


      <property>
		  <name>io.compression.codecs</name>
		  <value>org.apache.hadoop.io.compress.GzipCodec,
			org.apache.hadoop.io.compress.DefaultCodec,
			org.apache.hadoop.io.compress.BZip2Codec,
			org.apache.hadoop.io.compress.SnappyCodec
		  </value>
      </property>
</configuration>
           

hdfs-site

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow" ?>
<configuration>
	<!--HDFS超级用户 -->
	<property>
		<name>dfs.permissions.superusergroup</name>
		<value>hadoop</value>
	</property>

	<!--开启web hdfs -->
	<property>
		<name>dfs.webhdfs.enabled</name>
		<value>true</value>
	</property>
	<property>
		<name>dfs.namenode.name.dir</name>
		<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/data/dfs/name</value>
		<description> namenode 存放name table(fsimage)本地目录(需要修改)</description>
	</property>
	<property>
		<name>dfs.namenode.edits.dir</name>
		<value>${dfs.namenode.name.dir}</value>
		<description>namenode存放 transaction file(edits)本地目录(需要修改)</description>
	</property>
	<property>
		<name>dfs.datanode.data.dir</name>
		<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/data/dfs/data</value>
		<description>datanode存放block本地目录(需要修改)</description>
	</property>
	<property>
		<name>dfs.replication</name>
		<value>3</value>
	</property>
	<!-- 块大小256M (默认128M) -->
	<property>
		<name>dfs.blocksize</name>
		<value>268435456</value>
	</property>
	<!--======================================================================= -->
	<!--HDFS高可用配置 -->
	<!--指定hdfs的nameservice为ruozeclusterg5,需要和core-site.xml中的保持一致 -->
	<property>
		<name>dfs.nameservices</name>
		<value>ruozeclusterg5</value>
	</property>
	<property>
		<!--设置NameNode IDs 此版本最大只支持两个NameNode -->
		<name>dfs.ha.namenodes.ruozeclusterg5</name>
		<value>nn1,nn2</value>
	</property>

	<!-- Hdfs HA: dfs.namenode.rpc-address.[nameservice ID] rpc 通信地址 -->
	<property>
		<name>dfs.namenode.rpc-address.ruozeclusterg5.nn1</name>
		<value>hadoop001:8020</value>
	</property>
	<property>
		<name>dfs.namenode.rpc-address.ruozeclusterg5.nn2</name>
		<value>hadoop002:8020</value>
	</property>

	<!-- Hdfs HA: dfs.namenode.http-address.[nameservice ID] http 通信地址 -->
	<property>
		<name>dfs.namenode.http-address.ruozeclusterg5.nn1</name>
		<value>hadoop001:50070</value>
	</property>
	<property>
		<name>dfs.namenode.http-address.ruozeclusterg5.nn2</name>
		<value>hadoop002:50070</value>
	</property>

	<!--==================Namenode editlog同步 ============================================ -->
	<!--保证数据恢复 -->
	<property>
		<name>dfs.journalnode.http-address</name>
		<value>0.0.0.0:8480</value>
	</property>
	<property>
		<name>dfs.journalnode.rpc-address</name>
		<value>0.0.0.0:8485</value>
	</property>
	<property>
		<!--设置JournalNode服务器地址,QuorumJournalManager 用于存储editlog -->
		<!--格式:qjournal://<host1:port1>;<host2:port2>;<host3:port3>/<journalId> 端口同journalnode.rpc-address -->
		<name>dfs.namenode.shared.edits.dir</name>
		<value>qjournal://hadoop001:8485;hadoop002:8485;hadoop003:8485/ruozeclusterg5</value>
	</property>

	<property>
		<!--JournalNode存放数据地址 -->
		<name>dfs.journalnode.edits.dir</name>
		<value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/data/dfs/jn</value>
	</property>
	<!--==================DataNode editlog同步 ============================================ -->
	<property>
		<!--DataNode,Client连接Namenode识别选择Active NameNode策略 -->
                             <!-- 配置失败自动切换实现方式 -->
		<name>dfs.client.failover.proxy.provider.ruozeclusterg5</name>
		<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
	</property>
	<!--==================Namenode fencing:=============================================== -->
	<!--Failover后防止停掉的Namenode启动,造成两个服务 -->
	<property>
		<name>dfs.ha.fencing.methods</name>
		<value>sshfence</value>
	</property>
	<property>
		<name>dfs.ha.fencing.ssh.private-key-files</name>
		<value>/home/hadoop/.ssh/id_rsa</value>
	</property>
	<property>
		<!--多少milliseconds 认为fencing失败 -->
		<name>dfs.ha.fencing.ssh.connect-timeout</name>
		<value>30000</value>
	</property>

	<!--==================NameNode auto failover base ZKFC and Zookeeper====================== -->
	<!--开启基于Zookeeper  -->
	<property>
		<name>dfs.ha.automatic-failover.enabled</name>
		<value>true</value>
	</property>
	<!--动态许可datanode连接namenode列表 -->
	 <property>
	   <name>dfs.hosts</name>
	   <value>/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop/slaves</value>
	 </property>
</configuration>
           

slaves

hadoop001
hadoop002
hadoop003

           

yarn方面

mapred-site

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow" ?>
<configuration>
	<!-- 配置 MapReduce Applications -->
	<property>
		<name>mapreduce.framework.name</name>
		<value>yarn</value>
	</property>
	<!-- JobHistory Server ============================================================== -->
	<!-- 配置 MapReduce JobHistory Server 地址 ,默认端口10020 -->
	<property>
		<name>mapreduce.jobhistory.address</name>
		<value>hadoop001:10020</value>
	</property>
	<!-- 配置 MapReduce JobHistory Server web ui 地址, 默认端口19888 -->
	<property>
		<name>mapreduce.jobhistory.webapp.address</name>
		<value>hadoop001:19888</value>
	</property>

<!-- 配置 Map段输出的压缩,snappy-->
  <property>
      <name>mapreduce.map.output.compress</name> 
      <value>true</value>
  </property>
              
  <property>
      <name>mapreduce.map.output.compress.codec</name> 
      <value>org.apache.hadoop.io.compress.SnappyCodec</value>
   </property>

</configuration>
           

yarn-site

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl" target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow"  target="_blank" rel="external nofollow" ?>
<configuration>
	<!-- nodemanager 配置 ================================================= -->
	<property>
		<name>yarn.nodemanager.aux-services</name>
		<value>mapreduce_shuffle</value>
	</property>
	<property>
		<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
		<value>org.apache.hadoop.mapred.ShuffleHandler</value>
	</property>
	<property>
		<name>yarn.nodemanager.localizer.address</name>
		<value>0.0.0.0:23344</value>
		<description>Address where the localizer IPC is.</description>
	</property>
	<property>
		<name>yarn.nodemanager.webapp.address</name>
		<value>0.0.0.0:23999</value>
		<description>NM Webapp address.</description>
	</property>

	<!-- HA 配置 =============================================================== -->
	<!-- Resource Manager Configs -->
	<property>
		<name>yarn.resourcemanager.connect.retry-interval.ms</name>
		<value>2000</value>
	</property>
	<property>
		<name>yarn.resourcemanager.ha.enabled</name>
		<value>true</value>
	</property>
	<property>
		<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
		<value>true</value>
	</property>
	<!-- 使嵌入式自动故障转移。HA环境启动,与 ZKRMStateStore 配合 处理fencing -->
	<property>
		<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
		<value>true</value>
	</property>
	<!-- 集群名称,确保HA选举时对应的集群 -->
	<property>
		<name>yarn.resourcemanager.cluster-id</name>
		<value>yarn-cluster</value>
	</property>
	<property>
		<name>yarn.resourcemanager.ha.rm-ids</name>
		<value>rm1,rm2</value>
	</property>


    <!--这里RM主备结点需要单独指定,(可选)
	<property>
		 <name>yarn.resourcemanager.ha.id</name>
		 <value>rm2</value>
	 </property>
	 -->

	<property>
		<name>yarn.resourcemanager.scheduler.class</name>
		<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
	</property>
	<property>
		<name>yarn.resourcemanager.recovery.enabled</name>
		<value>true</value>
	</property>
	<property>
		<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
		<value>5000</value>
	</property>
	<!-- ZKRMStateStore 配置 -->
	<property>
		<name>yarn.resourcemanager.store.class</name>
		<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
	</property>
	<property>
		<name>yarn.resourcemanager.zk-address</name>
		<value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
	</property>
	<property>
		<name>yarn.resourcemanager.zk.state-store.address</name>
		<value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
	</property>
	<!-- Client访问RM的RPC地址 (applications manager interface) -->
	<property>
		<name>yarn.resourcemanager.address.rm1</name>
		<value>hadoop001:23140</value>
	</property>
	<property>
		<name>yarn.resourcemanager.address.rm2</name>
		<value>hadoop002:23140</value>
	</property>
	<!-- AM访问RM的RPC地址(scheduler interface) -->
	<property>
		<name>yarn.resourcemanager.scheduler.address.rm1</name>
		<value>hadoop001:23130</value>
	</property>
	<property>
		<name>yarn.resourcemanager.scheduler.address.rm2</name>
		<value>hadoop002:23130</value>
	</property>
	<!-- RM admin interface -->
	<property>
		<name>yarn.resourcemanager.admin.address.rm1</name>
		<value>hadoop001:23141</value>
	</property>
	<property>
		<name>yarn.resourcemanager.admin.address.rm2</name>
		<value>hadoop002:23141</value>
	</property>
	<!--NM访问RM的RPC端口 -->
	<property>
		<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
		<value>hadoop001:23125</value>
	</property>
	<property>
		<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
		<value>hadoop002:23125</value>
	</property>
	<!-- RM web application 地址 -->
	<property>
		<name>yarn.resourcemanager.webapp.address.rm1</name>
		<value>hadoop001:8088</value>
	</property>
	<property>
		<name>yarn.resourcemanager.webapp.address.rm2</name>
		<value>hadoop002:8088</value>
	</property>
	<property>
		<name>yarn.resourcemanager.webapp.https.address.rm1</name>
		<value>hadoop001:23189</value>
	</property>
	<property>
		<name>yarn.resourcemanager.webapp.https.address.rm2</name>
		<value>hadoop002:23189</value>
	</property>

	<property>
	   <name>yarn.log-aggregation-enable</name>
	   <value>true</value>
	</property>
	<property>
		 <name>yarn.log.server.url</name>
		 <value>http://hadoop001:19888/jobhistory/logs</value>
	</property>


	<property>
		<name>yarn.nodemanager.resource.memory-mb</name>
		<value>2048</value>
	</property>
	<property>
		<name>yarn.scheduler.minimum-allocation-mb</name>
		<value>1024</value>
		<discription>单个任务可申请最少内存,默认1024MB</discription>
	 </property>

  
  <property>
	<name>yarn.scheduler.maximum-allocation-mb</name>
	<value>2048</value>
	<discription>单个任务可申请最大内存,默认8192MB</discription>
  </property>

   <property>
       <name>yarn.nodemanager.resource.cpu-vcores</name>
       <value>2</value>
    </property>

</configuration>
           

zookeeper,hdfs,yarn启动

先启动zookeeper

$ZOOKEEPER_HOME/bin/zkServer.sh start
zkServer.sh status
 如果是两个follower,1个leader,则成功
           

启动journalnode

cd app/hadoop-2.6.0-cdh5.7.0
sbin/hadoop-daemon.sh start journalnode

[[email protected] hadoop-2.6.0-cdh5.7.0]$ jps
2899 JournalNode
2950 Jps
2782 QuorumPeerMain  这是zookeeper进程名


           

启动hadoop

第一次启动先格式化一下,注意两个namenode只选取一台做hadoop格式化
 [[email protected] hadoop-2.6.0-cdh5.7.0]$ hadoop namenode -format
 然后将格式化后的文件(datanode和namenode所在)覆盖第二个namenode所在机器,同步namenode元数据
 [[email protected] hadoop-2.6.0-cdh5.7.0]$ scp -r data hadoop002:/home/hadoop/app/hadoop-2.6.0-cdh5.7.0
 
 初始化zkfc,只在hadoop001做,注意,因为一个命名空间里面包括了hadoop001和hadoop002的hdfs地址
 [[email protected] hadoop-2.6.0-cdh5.7.0]$ hdfs zkfc -formatZK

Successfully created /hadoop-ha/ruozeclusterg5 in ZK.

 启动hdfs
 [[email protected] hadoop-2.6.0-cdh5.7.0]$ start-dfs.sh

 报错,slaves是dos形式,适用于win,要转格式
           
高可用环境搭建hadoop配置zookeeper,hdfs,yarn启动
[[email protected] hadoop-2.6.0-cdh5.7.0]$ stop-dfs.sh
 
 安装转格式的插件
yum install -y dos2unix
dos2unix slaves
 
 注意启动顺序
[[email protected] hadoop]$ start-dfs.sh
18/11/27 10:18:36 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [hadoop001 hadoop002]
hadoop001: starting namenode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-namenode-hadoop001.out
hadoop002: starting namenode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-namenode-hadoop002.out
hadoop002: starting datanode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-datanode-hadoop002.out
hadoop001: starting datanode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-datanode-hadoop001.out
hadoop003: starting datanode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-datanode-hadoop003.out
Starting journal nodes [hadoop001 hadoop002 hadoop003]
hadoop002: starting journalnode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-journalnode-hadoop002.out
hadoop001: starting journalnode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-journalnode-hadoop001.out
hadoop003: starting journalnode, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-journalnode-hadoop003.out
18/11/27 10:18:53 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting ZK Failover Controllers on NN hosts [hadoop001 hadoop002]
hadoop002: starting zkfc, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-zkfc-hadoop002.out
hadoop001: starting zkfc, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/hadoop-hadoop-zkfc-hadoop001.out

 启动yarn
 [[email protected] hadoop]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-resourcemanager-hadoop001.out
hadoop002: starting nodemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-nodemanager-hadoop002.out
hadoop003: starting nodemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-nodemanager-hadoop003.out
hadoop001: starting nodemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-nodemanager-hadoop001.out

 第二个resourcemanager需要手动启动
 [[email protected] hadoop-2.6.0-cdh5.7.0]$ yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/logs/yarn-hadoop-resourcemanager-hadoop002.out
           

web界面查看

先配置云主机出入方向的安全组规则

高可用环境搭建hadoop配置zookeeper,hdfs,yarn启动
高可用环境搭建hadoop配置zookeeper,hdfs,yarn启动
高可用环境搭建hadoop配置zookeeper,hdfs,yarn启动
如此这般,便可在网页访问
 访问公网ip
 hadoop
 http://47.92.250.235:50070
 
 yarn
 http://47.92.250.235:50070:8088 (active)
 http://47.92.250.236:50070:8088/cluster/cluster(standby)
  
 启动jobhistory,yarn存储的记录有限
 [[email protected] hadoop]$ $HADOOP_HOME/sbin/mr-jobhistory-daemon.sh start historyserver

 jobhistory在端口号19888
 
           

启动和停止集群顺序

启动
 zkServer.sh start
 [[email protected] sbin]# start-dfs.sh
 [[email protected] sbin]# start-yarn.sh
 [[email protected] sbin]# yarn-daemon.sh start resourcemanager
 [[email protected] ~]# $HADOOP_HOME/sbin/mr-jobhistory-daemon.sh start historyserver


 停止
 [[email protected] sbin]# stop-yarn.sh
 [[email protected] sbin]# yarn-daemon.sh stop resourcemanager
 [[email protected] sbin]# stop-dfs.sh
 zkServer.sh stop
           

继续阅读