天天看点

钢条切割问题——(暴力法(Brute force), Top-down DP演算法,Bottom-up DP演算法)对比

注意:以下是三合一的代码,如果只想要:

暴力法(Brute force):

https://blog.csdn.net/qq_37486501/article/details/84844197

Top-down DP演算法:

https://blog.csdn.net/qq_37486501/article/details/84844222

Bottom-up DP演算法:

https://blog.csdn.net/qq_37486501/article/details/84844253

Rod Cutting题目:

钢条切割问题——(暴力法(Brute force), Top-down DP演算法,Bottom-up DP演算法)对比
  • 注意:

    本题采用txt文件读入,屏幕输出;

    如果需要屏幕读入屏幕输出,可以留言或者自己改代码~

暴力法(Brute force), Top-down DP演算法,Bottom-up DP演算法——(三合一代码)如下:

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.Scanner;
class Rod{//创建Rod类,里面含有
	public int[][] extendedBottomUpCutRod(int[] prices, int n) {
        int[] revs = new int[n + 1];
        int[] size = new int[n + 1];
        revs[0] = 0;
        int max = Integer.MIN_VALUE;
        for (int j = 1; j <= n; j++) {
            max = Integer.MIN_VALUE;
            for (int i = 0; i < j; i++) {
                if (max < prices[i] + revs[j - i - 1]) {
                    max = prices[i] + revs[j - i - 1];
                    size[j] = i + 1;
                    //System.out.print(size[j]+" ");
                }
        }
            revs[j] = max;
        }
        
        //For simplicity, return a 2d array where rs[0] is the revs array, rs[1] is the size array.
        //This may not be the optimized solution but I think it's cumbersome to create a tuple class in Java so I choose to use a 2D array.
        int[][] rs = new int[2][n + 1];
        for (int i = 0; i < n + 1; i++) {
            rs[0][i] = revs[i];
            rs[1][i] = size[i];
            //System.out.print(size[i]+" ");
        }
        return rs;
    }
	 //Naive version: recursive top-down implementation
    //Time: O(2^n)
    public int cutRod(int[] prices, int n) {
        if (n == 0) {
            return 0;
        }
        int max = Integer.MIN_VALUE;
        for (int i = 0; i < n; ++i) {
            max = Math.max(max, prices[i] + cutRod(prices, n - i - 1));
        }
        return max;
    }

    //Dynamic-programming: top-down approach with memoization
    //Time: O(n^2)
    public int memoizedCutRod(int[] prices, int n) {
        int[] revs = new int[n + 1];//revs[i] corresponds to the maximum revenues of length i. We define revs[0] = 0.
        for (int i = 0; i < revs.length; i++) {
            revs[i] = -1;//we use -1 here to indicate a state that the revs is not cached yet instead of negative infinity in the book because revenue is always nonnegative.
        }
        return memoizedCutRodAux(prices, n, revs);
    }

    private int memoizedCutRodAux(int[] prices, int n, int[] revs) {
        if (revs[n] >= 0) {
            return revs[n];
        }
        int max = Integer.MIN_VALUE;
        if (n == 0) {
            max = 0;
        } else {
            for (int i = 0; i < n; i++) {
                max = Math.max(max, prices[i] + memoizedCutRodAux(prices, n - i - 1, revs));
            }
        }
        revs[n] = max;
        return max;
    }
    
    //Dynamic-programming: bottom-up approach
    //Time: O(n^2)
    public int bottomUpCutRod(int[] prices, int n) {
        int[] revs = new int[n + 1];
        revs[0] = 0;//the revenue of a rod of length 0 is 0.
        int max = Integer.MIN_VALUE;
        for (int j = 1; j <= n; j++) {//revs[j] indicates maximum revenue of a rod of length j.
            max = Integer.MIN_VALUE;
            for (int i = 0; i < j; i++) {
                max = Math.max(max, prices[i] + revs[j - i - 1]);
            }
            revs[j] = max;
        }
        return revs[n];
    }
    
    public void printCutRodSolution(int[] prices, int n) {
        int[][] revsAndSize = extendedBottomUpCutRod(prices, n);
        int maxRevenue = revsAndSize[0][n];
        int[] size = revsAndSize[1];
        System.out.print("Cuts:");
        while (n > 0) {
            System.out.print(size[n]+" ");
            n -= size[n];
        }
        System.out.println();
        System.out.println("max revenue: "+maxRevenue);
    }
}

public class RodCutting {
    public static void main(String[] args) {
    	try {
    		FileReader in = new FileReader("p1.txt");
    		BufferedReader inin=new BufferedReader(in);//读入文件
    		 	try {
    		 		String s="";
    		 		int i=0;
    				int[] Length=new int[1000];
    				int[] prices=new int[1000];
    		 		while((s=inin.readLine())!=null)
    		 		{  
    		 		//System.out.println(s);
    		 	//将每一行分为两个整数
    		 		String []data=s.split(" ");
    		 		//System.out.println("长度"+data.length);
    		 		int [] datas=new int[data.length];
    		 		//将String类型数组转成int类型
    		 		for(int j=0;j<data.length;j++)
    		 		{ 
    		 			datas[j]=Integer.parseInt(data[j]);
    		 			//System.out.println(j+" "+data[j]);
    		 		}
//    		 		for(int i=0;i<datas.length;i++)
//    		 		{    System.out.println(i+" "+datas[i]+" ");   } 	
    		 		Length[i]=datas[0];
    		 		prices[i]=datas[1];
    		 		//System.out.println(data);
    		 		i++;
    		 		}
//    		 		for(int k=0;k<i;k++)
//    		 		{    System.out.println(k+" "+Length[k]+" ");   } //长度Length
//    		 		for(int k=0;k<i;k++)
//    		 		{    System.out.println(k+" "+Price[k]+" ");   } //价格Price
    		 		
    		 		Scanner scanner=new Scanner(System.in);
    		 		System.out.println("请输入Rod的长度: ");
    		 		int n=scanner.nextInt();
    		 		//System.out.println(Cut_Rod(Price,n));

    		        Rod rc = new Rod();
    		        int max0 =0;
		            int max1 =0;
		            int max2 =0 ;
    		        for (int i1 = 0; i1 <= n; i1++) {
    		        	 max0 = rc.cutRod(prices, i1);
    		             max1 = rc.memoizedCutRod(prices, i1);
    		             max2 = rc.bottomUpCutRod(prices, i1);    		             
//    		            System.out.printf("recursive max: %d%n", max0);
//    		            System.out.printf("memoized max: %d%n", max1);
//    		            System.out.printf("bottomUp (dp) max: %d%n", max2);
    		            //rc.printCutRodSolution(prices, i1);
    		            //System.out.println("----------------");
    		        }
    		        
    		        System.out.println("Rod Length:"+n);
		            System.out.printf("recursive max: %d%n", max0);
		            System.out.printf("memoized max: %d%n", max1);
		            System.out.printf("bottomUp (dp) max: %d%n", max2);
    		        rc.printCutRodSolution(prices, n);
//    		        rc.printCutRodSolution(prices, max0);
//		            System.out.println("----------------");
    		        
    		 	} catch (IOException e) {
    				// TODO Auto-generated catch block
    				e.printStackTrace();
    			}
    		} catch (FileNotFoundException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		}
    }
    
}



           

运行成功, 截图如下:

钢条切割问题——(暴力法(Brute force), Top-down DP演算法,Bottom-up DP演算法)对比

继续阅读