利用Python进行文本分类,
可用于过滤垃圾文本
1. 抽样
2. 人工标注样本文本中垃圾信息
3. 样本建模
4. 模型评估
5. 新文本预测
参考:
http://scikit-learn.org/stable/user_guide.html
PYTHON自然语言处理中文翻译 NLTK Natural Language Processing with Python 中文版
主要步骤:
1. 分词
2. 特征词提取
3. 生成词-文档矩阵
4. 整合分类变量
5. 建模
6. 评估
7. 预测新文本
#示例
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import MySQLdb
import pandas as pd
import numpy as np
import jieba
import nltk
import jieba.posseg as pseg
from sklearn import cross_validation
#1. 读取数据,type为文本分类,0/1变量
df = pd.read_csv('F:\csv_test.csv',names=['id','cont','type'])
#2. 关键抽取
cont = df['cont']
tagall=[]
for t in cont:
tags = jieba.analyse.extract_tags(t,kn)
tagall.append(tags)
dist = nltk.FreqDist(tagall) #词频统计选top100的关键词
fea_words = fdist.keys()[:100]
#3. 生成词-文档矩阵
def word_features(content, top_words):
word_set = set(content)
features = {}
for w in top_words:
features["w_%s" % w] = (w in word_set)
return features
#4. 整合矩阵与分类结果变量
def data_feature(df, fea_words):
data_set = []
cont = df['cont']
for i in range(0,len(cont)):
content =jieba.cut(cont)
feat = word_features(content,fea_words )
category = df.loc[i,'type']
tup = (feat, category)
data_set.append(tup)
return data_set
data_list = data_feature(df, fea_words)
#5. 建立分类模型
#训练集与测试集
train_set,test_set = cross_validation.train_test_split(data_list,test_size=0.5)
#建模,贝叶斯
classifier = nltk.NaiveBayesClassifier.train(train_set)
#建模,决策树
classifier = nltk.DecisionTreeClassifier.train(train_set)
#6. 模型评估准确率
print nltk.classify.accuracy(classifier,test_set)
#7. 预测结果输出
pre_set = data_feature(new_data,fea_words)
pre_result = []
for item in pre_set:
result = classifier.classify(item)
pre_result.append(result)
#查看预测结果分布
pre_tab = set(pre_result)
for p in pre_tab:
print p,pre_result.count(p)
其中2中特征词提取可采用各种方法进行,
3,4步骤可改善,提高性能,
5建模部分的模型可采用更多分类模型,逻辑回归,SVM...