学习13.内容# 1.内置函数二 # 2.闭包
目录
- 内置函数二
- 重要的内置函数和匿名函数
- 闭包
内置函数二
abs 绝对值 返回的都是正数
print([abd(i) for i in lst])
enumerate 枚举 ("可迭代对象","序号的起始值") 默认起始值是0
[(0,1),(1,2),(2,3)]
print([i for i in enumerate(lst,10)])
lst = [11,22,33,-44,23,21]
new_lst = []
for i in enumerate(lst):
new_lst.append(i)
print(new_lst)
print([i for i in enumerate(lst,1000)])
max 求最大值
print(max([1,2,3,4,56,7,8]))
min 求最小值
print(min([1,2,3,4,-56,7,8]))
sum 求和
print(sum([1,2,3,4,5],100))
range
Python3.6:
g = range(0,10) # 可迭代对象
g.__iter__()
Python2.6:
range(0,10) # 获取是一个列表
xrange(0,10) # 获取是一个可迭代对象
from collections import Iterable,Iterator
print(isinstance(g,Iterable))
print(isinstance(g,Iterator))
sep多个元素的连接符
print(sep=" ", end="\n")
print(1, 2, 3, sep=" ") # sep多个元素的连接符
print(1, end="\t")
print(2, end=" ")
print(3)
open
print(12345,file=open("t1.txt","w",encoding="utf-8"))
list,dict
print(list("alex")) #['alex',]
print(dict(key=1,a="alex"))
print(dict(((1,2),(2,3),(3,4))))
print(dict([i for i in enumerate(range(20),1)]))
zip拉链 按照最少的进行合并
lst1 = [1,2,3,4,5]
lst2 = ['a',"b","c","d","f","e"]
print(dict(list(zip(lst1,lst2)))) # 面试题
print(dict(zip(lst1,lst2))) # 面试题
dir 查看当前函数的方法
print(dir(list))
重要的内置函数和匿名函数
匿名函数
f = lambda x,y:(x,y)
print(f(1,2))
print(f.__name__)
def func():
return 1
print(func())
print((lambda x:x)(2)) # 同一行定义 同一行调用
lambda 关键字 -- 定义函数
x,y 形参
:x+y 返回值 -- 只能返回一个数据类型
lst = [lambda i:i*i for i in range(10)]
print(lst[2](2))
lst = []
for i in range(10):
def func(i):
return i*i
lst.append(func)
print(lst[2](3))
lst = [lambda :i*i for i in range(10)]
print(lst[2]())
for i in range(10):
pass
print(i)
lst = []
for i in range(10):
def func():
return i*i
lst.append(func)
print(lst[2]())
一行函数
形参可以不写
返回值必须要写,返回值只能返回一个数据类型
lst = list((lambda i:i*i for i in range(5)))
print(lst[1](4))
lst = [x for x in (lambda :i**i for i in range(5))]
print(lst[2]())
lst1 = []
def func():
for i in range(5):
def foo():
return i**i
yield foo
for x in func():
lst1.append(x)
print(lst1[2]())
format
print(format(13,">20")) # 右对齐
print(format(13,"<20")) # 左对齐
print(format(13,"^20")) # 居中
# 进制转换
print(format(13,"08b")) # 2
print(format(13,"08d")) # 10
print(format(13,"08o")) # 8
print(format(12,"08x")) # 16
print(bin(13))
filter() 过滤
lst = [1,2,3,4,5,6,7]
def func(s):
return s > 3
print(list(filter(func,lst)))
# func就是自己定义一个过滤条件,lst要迭代的对象
lst = [1,2,3,4,5,6,7]
print(list(filter(lambda x:x % 2 == 1,lst)))
map() # 对象映射
print(list(map(lambda x:x*x,[1,2,3,8,4,5])))
对可迭代对象中每个元素进行加工
reversed 反转
lst = [1,2,3,4,5]
lst.reverse()
print(lst)
lst1 = list(reversed(lst))
print(lst)
print(lst1)
sorted 排序
lst = [1,23,34,4,5,213,123,41,12,32,1]
print(sorted(lst)) # 升序
print(lst)
lst = [1,23,34,4,5,213,123,41,12,32,1]
print(sorted(lst,reverse=True)) # 降序
key 制定排序规则
dic = {"key":1,"key1":2,"key3":56}
print(sorted(dic,key=lambda x:dic[x],reverse=True)) # key是指定排序规则
print(max([1,2,-33,4,5],key=abs)) # key指定查找最大值的规则
reduce 累计算
from functools import reduce
# reduce 累计算
print(reduce(lambda x,y:x-y,[1,2,3,4,5])
闭包
def func():
a = 1
def f1():
def foo():
print(a)
return foo
return f1
ret = func()
a = ret()
a()
func()()()
在嵌套函数内,使用非全局变量(且不是本层变量) -- 就是闭包
avg_lst = []
def func(pirce):
avg_lst.append(pirce)
avg = sum(avg_lst) / len(avg_lst)
return avg
print(func(150000))
print(func(160000))
print(func(170000))
print(func(150000))
avg_lst.append(18888888)
def func(pirce):
avg_lst = []
avg_lst.append(pirce)
avg = sum(avg_lst) / len(avg_lst)
return avg
print(func(150000))
print(func(160000))
print(func(170000))
print(func(150000))
def func():
avg_lst = [] # ***变量
def foo(pirce):
avg_lst.append(pirce)
avg = sum(avg_lst) / len(avg_lst)
return avg
return foo
ret = func()()
print(ret(150000))
print(ret(160000))
print(ret(170000))
print(ret(150000))
print(ret(180000))
print(ret.__closure__)
(<cell at 0x0000018E93148588: list object at 0x0000018E931D9B08>,)
closure 判断是不是闭包
了解:
print(ret.__code__.co_freevars) # 获取的是***变量
print(ret.__code__.co_varnames) # 获取的是局部变量
闭包的作用
1. 保证数据的安全性
2. 装饰器
posted on 2019-07-22 19:36 changxin7 阅读(...) 评论(...) 编辑 收藏