天天看点

JVM性能优化

JVM 性能优化。

一、内存溢出

内存溢出的原因:程序在申请内存时,没有足够的空间。

1. 栈溢出

方法死循环递归调用(***Error)、不断建立线程(OutOfMemoryError)。

2. 堆溢出

不断创建对象,分配对象大于最大堆的大小(OutOfMemoryError)。

3. 直接内存

JVM 分配的本地直接内存大小大于 JVM 的限制,可以通过-XX:MaxDirectMemorySize 来设置(不设置的话默认与堆内存最大值一样,也会出现OOM 异常)。

4. 方法区溢出

一个类要被垃圾收集器回收掉,判定条件是比较苛刻的,在经常动态生产大量 Class 的应用中,CGLIb 字节码增强,动态语言,大量 JSP(JSP 第一次运行需要编译成 Java 类),基于 OSGi 的应用(同一个类,被不同的加载器加载也会设为不同的类),都可能会导致OOM。

二、内存泄露

程序在申请内存后,无法释放已申请的内存空间,导致这一部分的原因主要是代码写的不合理,比如以下几种情况。

1. 长生命周期的对象持有短生命周期对象的引用

例如将 ArrayList 设置为静态变量,然后不断地向ArrayList中添加对象,则 ArrayList 容器中的对象在程序结束之前将不能被释放,从而造成内存泄漏。

2. 连接未关闭

如数据库连接、网络连接和 IO 连接等,只有连接被关闭后,垃圾回收器才会回收对应的对象。

3. 变量作用域不合理

例如:

  • 一个变量的定义的作用范围大于其使用范围。
  • 如果没有及时地把对象设置为 null。

4. 内部类持有外部类

Java 的 非静态内部类 的这种创建方式,会隐式地持有外部类的引用,而且默认情况下这个引用是强引用,因此,如果内部类的生命周期长于外部类的生命周期,程序很容易就产生内存泄露(可以理解为:垃圾回收器会回收掉外部类的实例,但由于内部类持有外部类的引用,导致垃圾回收器不能正常工作)。

解决办法:将非静态内部类改为 静态内部类,即加上 static 修饰,例如:

public class Jvm5 {
    private static String string = "SuunyBear";

    public static void show() {
        System.out.println("show");
    }

    public static void main(String[] args) {
        Jvm5 m = new Jvm5();
        // 非静态内部类的构造方式
        // Child c=m.new Child();
        Child c = new Child();
        c.test();
    }

    /**
     * 内部类Child --静态的,防止内存泄漏
     */
    static class Child {
        public int i;

        public void test() {
            System.out.println("string:" + string);
            show();
        }
    }
}
           

5. Hash值改变

在集合中,如果修改了对象中的那些参与计算哈希值的字段,会导致无法从集合中单独删除当前对象,造成内存泄露。

使用例子来说明。

public class Jvm6 {
    private int x;
    private int y;

    public Jvm6(int x, int y) {
        super();
        this.x = x;
        this.y = y;
    }
    /**
     * 重写HashCode的方法
     */
    @Override
    public int hashCode() {
        final int prime = 31;
        int result = 1;
        result = prime * result + x;
        result = prime * result + y;
        return result;
    }
    /**
     * 改变y的值:同时改变hashcode
     */
    public void setY(int y) {
        this.y = y;
    }

    public static void main(String[] args) {
        HashSet<Jvm6> hashSet = new HashSet<Jvm6>();
        Jvm6 data1 = new Jvm6(1, 3);
        Jvm6 data2 = new Jvm6(3, 5);
        hashSet.add(data1);
        hashSet.add(data2);
        data2.setY(7); // data2的Hash值改变
        hashSet.remove(data2); // 删掉data2节点
        System.out.println(hashSet.size()); // 2
    }
}
           

三、内存溢出和内存泄漏辨析

  • 内存溢出:实实在在的内存空间不足导致。
  • 内存泄漏:该释放的对象没有释放,常见于使用容器保存元素的情况下。

如何避免:

  • 内存溢出:检查代码以及设置足够的空间。
  • 内存泄漏:一定是代码有问题,往往很多情况下,内存溢出往往是内存泄漏造成的。

四、了解MAT

mat是一个内存泄露的分析工具。

1. 浅堆和深堆

  • 浅堆(Shallow Heap):是指一个对象所消耗的内存。
  • 深堆(Retained Heap):这个对象被 GC 回收后,可以真实释放的内存大小,也就是只能通过对象被直接或间接访问到的所有对象的集合。通俗地说,就是一个对象包含(引用)的所有对象的大小,如图:
JVM性能优化

2. MAT的使用

1、下载MAT工具:下载地址

2、内存溢出例子演示

参数说明:

  • -Xms5m 堆初始大小5M
  • -Xmx5m 堆最大大小5M
  • -XX:+PrintGCDetails 打印gc日志详情
  • -XX:+HeapDumpOnOutOfMemoryError 输出内存溢出文件
  • -XX:HeapDumpPath=D:/oomDump/dump.hprof 内存溢出文件保存位置,此文件用于MAT分析
/**
 * VM Args:-Xms5m -Xmx5m  -XX:+PrintGCDetails -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=D:/oomDump/dump.hprof
 */
public class Jvm7 {

    public static void main(String[] args) {
        // 在方法执行的过程中,它是GCRoots
        List<Object> list = new LinkedList<>();
        int i = 0;
        while (true) {
            i++;
            if (i % 10000 == 0) {
                System.out.println("i=" + i);
            }
            list.add(new Object());
        }
    }
}
           

设置参数运行后,内存溢出,程序结束,然后我们就可以用下载好的MAT来分析了,当然MAT也只是分析猜想,并不代表一定是这个原因导致内存溢出。

打开我们保存的文件目录进行分析。

JVM性能优化

分析结果。

JVM性能优化

此时可以查看详情查看具体原因,当然这个原因也只是一种猜想。

五、JDK提供的一些工具

分类 属性值 描述
命令行工具 jps 虚拟机进程状况工具
jstat 虚拟机统计信息监视工具
jinfo Java配置信息工具
jmap Java内存映像工具
jhat 虚拟机堆转储快照分析工具
jstack Java堆栈跟踪工具
可视化工具 JConsole Java监视与管理控制台
VisualVM 多合一故障处理工具

所有的工具都在jdk的安装bin目录下,比如我的在

C:\My Program Files\Java\jdk1.8.0_201\bin

其中一般情况命令行在线上服务器上使用,可视化工具在本地使用,当然如果你的线上服务器允许远程的话也可以使用可视化工具。

六、GC调优

1. GC调优重要参数

生产环境推荐开启

  • -XX:+HeapDumpOnOutOfMemoryError
    • 输出内存溢出文件
  • -XX:HeapDumpPath=D:/oomDump/dump.hprof
    • 内存溢出文件保存位置,此文件用于MAT分析
    • 当然,一般Linux服务器可以设置为

      ./java_pid<pid>.hprof

      默认为Java进程启动位置

调优之前开始,调优之后关闭

  • -XX:+PrintGC
    • 调试跟踪之 打印简单的 GC 信息参数:
  • -XX:+PrintGCDetails和-XX:+PrintGCTimeStamps
    • 打印详细的 GC 信息
  • -Xlogger:logpath:log/gc.log
    • 设置 gc 的日志路,将 gc.log 的路径设置到当前目录的 log 目录下. 应用场景: 将 gc 的日志独立写入日志文件,将 GC 日志与系统业务日志进行了分离,方便开发人员进行追踪分析

考虑使用

  • -XX:+PrintHeapAtGC
    • 打印推信息,获取 Heap 在每次垃圾回收前后的使用状况
  • -XX:+TraceClassLoading
    • 在系统控制台信息中看到 class 加载的过程和具体的 class 信息,可用以分析类的加载顺序以及是否可进行精简操作
  • -XX:+DisableExplicitGC
    • 禁止在运行期显式地调用 System.gc()

2. GC调优的原则(很重要)

  • 大多数的 java 应用不需要 GC 调优
  • 大部分需要 GC 调优的的,不是参数问题,是代码问题
  • 在实际使用中,分析 GC 情况优化代码 比 优化 GC 参数 要多得多
  • GC 调优是最后的手段

调优的目的

  • GC 的时间够小
  • GC 的次数够少发生
  • Full GC 的周期足够的长,时间合理,最好是不发生

注: 如果满足下面的指标,则一般不需要进行 GC调优

  • Minor GC 执行时间不到 50ms
  • Minor GC 执行不频繁,约 10 秒一次
  • Full GC 执行时间不到 1s
  • Full GC 执行频率不算频繁,不低于 10 分钟 1 次

3. GC调优步骤

1、监控 GC 的状态使用各种 JVM 工具,查看当前日志,分析当前 JVM 参数设置,并且分析当前堆内存快照和 gc 日志,根据实际的各区域内存划分和 GC 执行时间,觉得是否进行优化。

2、分析结果,判断是否需要优化如果各项参数设置合理。

  • 系统没有超时日志出现,GC 频率不高,GC 耗时不高,那么没有必要进行 GC 优化。
  • 如果 GC 时间超过 1 秒,或者频繁 GC,则必须优化。

3、调整 GC 类型和内存分配如果内存分配过大或过小,或者采用的 GC 收集器比较慢,则应该优先调整这些参数,并且先找 1 台或几台机器进行 测试,然后比较优化过的机器和没有优化的机器的性能对比,并有针对性的做出最后选择。

4、不断的分析和调整通过不断的试验和试错,分析并找到最合适的参数5,全面应用参数如果找到了最合适的参数,则将这些参数应用到所有服务器,并进行后续跟踪。

分析GC日志

主要关注 MinorGC 和 FullGC 的回收效率(回收前大小和回收比较)、回收的时间。

1、-XX:+UseSerialGC

  • 以参数-Xms5m -Xmx5m -XX:+PrintGCDetails -XX:+UseSerialGC 为例详细说明。
  • [DefNew: 1855K->1855K(1856K), 0.0000148 secs][Tenured: 2815K->4095K(4096K), 0.0134819 secs] 4671K。
  • DefNew 指明了收集器类型,而且说明了收集发生在新生代。
  • 1855K->1855K(1856K)表示,回收前 新生代占用 1855K,回收后占用 1855K,新生代大小 1856K
  • 0.0000148 secs 表明新生代回收耗时。
  • Tenured 表明收集发生在老年代。
  • 2815K->4095K(4096K), 0.0134819 secs:含义同新生代最后的 4671K 指明堆的大小。

2、-XX:+UseParNewGC

  • 收集器参数变为-XX:+UseParNewGC。
  • 日志变为:[ParNew: 1856K->1856K(1856K), 0.0000107 secs][Tenured: 2890K->4095K(4096K), 0.0121148 secs]。
  • 收集器参数变为-XX:+ UseParallelGC 或 UseParallelOldGC。
  • 日志变为:[PSYoungGen: 1024K->1022K(1536K)] [ParOldGen: 3783K->3782K(4096K)] 4807K->4804K(5632K)。

3、-XX:+UseConcMarkSweepGC 和 -XX:+UseG1GC

使用这两个收集器的日志会和UseParNewGC一样有明显的相关字样。

4. 项目启动调优

开启日志分析-XX:+PrintGCDetails,启动项目时,通过分析日志,不断地调整参数,减少GC次数。

例如:

1、碰到 Metadata空间 不足发生GC,那么调整 Metadata空间

-XX:MetaspaceSize=64m

减少 FullGC 。

2、碰到MinorGC,那么调整堆空间

-Xms1000m

大小减少FullGC 。

3、如果还是有MinorGC,那么继续增大堆空间大小,或者增大新生代比例

-Xmn900m GC

,此时新生代空间为900m,老年代大小100m 。

5. 项目运行GC调优

使用 jmeter 工具 来进行压测,然后分析原因,进行调优,当然 正式上线的项目请谨慎操作 。

jmeter工具安装使用

1、下载好对应版本的jmeter,注意jdk版本。

JVM性能优化

2、jmeter需要Java运行时环境,所以如果报错请先检查你的Java环境变量设置,解压到你想要的路径,例如我解压在

C:\My Program Files\apache-jmeter-5.2.1

,在bin目录下有一个

jmeter.bat

文件,双击启动。

至于具体怎么使用就百度吧,基本拿到软件就知道使用了,毕竟这个说来就浪费篇幅了。

聚合报告参数

这里放出我本地 jmeter 测试一个项目之后的 聚合报告参数解释。

JVM性能优化

6. 推荐策略(仅作参考)

1、新生代大小选择

  • 尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择).在此种情况下,新生代收集发生的频率也是最小的.同时,减少到达老年代的对象。
  • 避免设置过小,当新生代设置过小时会导致:MinorGC 次数更加频繁、可能导致 MinorGC 对象直接进入老年代,如果此时老年代满了,会触发 FullGC。

2、老年代大小选择

一般吞吐量优先的应用都有一个很大的新生代和一个较小的老年代.原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而老年代尽存放长期存活对象

七、逃逸分析

补充知识,并非所有的对象都会在堆上面分配,而没有在堆上分配的对象是因为经过逃逸分析,分析之后发现该对象的大小可以在栈上分配,不会造成栈溢出,这时,对象就可以在栈上分配。

当然,如果经过逃逸分析,发现该对象在栈上分配会照成栈溢出,那么该对象就会在堆空间分配。

参数jdk1.8默认开启

  • -XX:+DoEscapeAnalysis 启用逃逸分析(默认打开)
  • -XX:+EliminateAllocations 标量替换(默认打开)
  • -XX:+UseTLAB 本地线程分配缓冲(默认打开)

八、常用的性能评价/测试指标

一个 web 应用不是一个孤立的个体,它是一个系统的部分,系统中的每一部分都会影响整个系统的性能。

1、响应时间:提交请求和返回该请求的响应之间使用的时间,一般比较关注平均响应时间。

2、并发数:同一时刻,对服务器有实际交互的请求数,和网站在线用户数的关联:1000 个同时在线用户数,可以估计并发数在 5%到 15%之间,也就是同时并发数在 50~150 之间。

3、吞吐量:对单位时间内完成的工作量(请求)的量度,例如1秒处理5万个请求。

都读到这里了,来个 点赞、评论、关注、收藏 吧!

文章作者:IT王小二

首发地址:https://www.itwxe.com/posts/5878703e/

版权声明:文章内容遵循 署名-非商业性使用-禁止演绎 4.0 国际 进行许可,转载请在文章页面明显位置给出作者与原文链接。