天天看点

多维随机变量及其分布1

一、二维随机变量

定义:设E是一个随机试验,它的样本空间是S={e},设X=X(e)和Y=Y(e),称(X,Y)为二维随机变量

1、二维离散型随机变量及分布律

(1)、设二维离散型随机变量(X,Y)的所有可能取的值为(Xi,Yj),则其分布律为:

多维随机变量及其分布1

也可以表示为:

多维随机变量及其分布1

(2)、二维随机变量分布律性质

多维随机变量及其分布1

2、二维随机变量的分布函数

多维随机变量及其分布1

F(x,y)的值就是随机点落在如图区域的概率

多维随机变量及其分布1

性质:

①、F(x,y)是x和y的不减函数

②、0≤F(x,y)≤1

③、F(x,y)关于x、y均右连续

④、对任意x1<x2、y1<y2,有F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1)≥0

3、二维连续型随机变量及其概率密度

如果存在非负的函数f(x,y)使得对任意x,y有:

多维随机变量及其分布1

则称(X,Y)是连续型二维随机变量,f(x,y)称为(X,Y)的概率密度

(1)、密度函数的概率意义

多维随机变量及其分布1

G为包含(x,y)的区域,σ为G的面积·

(2)、密度函数的性质

多维随机变量及其分布1

(3)、密度函数计算概率

多维随机变量及其分布1

(4)、密度函数与分布函数

多维随机变量及其分布1

4、3个常见连续型随机变量

(1)、二维指数分布

多维随机变量及其分布1

(2)、二维均匀分布

多维随机变量及其分布1

(3)、二维正态分布

多维随机变量及其分布1

二、边缘分布

1、求边缘分布

分布律:

多维随机变量及其分布1

则:

多维随机变量及其分布1

分布函数:F(x,y)

则:

多维随机变量及其分布1

概率密度:f(x,y)

多维随机变量及其分布1
多维随机变量及其分布1

继续阅读