天天看点

kotlin 协程通道

// 1.通道 传输值流的方法
fun main_channel() = runBlocking {
    val channel = Channel<Int>()//声明一个channel
    launch {
        for (i in 1..3) {
            channel.send(i + i)
        }//发送1+1 2+2 3+3
        channel.close()//没有立即关闭通道
    }
    repeat(3) {  // 这样写也是可以for (y in channel) println(y)
        println("接收到的是${channel.receive()}")
    }
    println("end ..")
}

//2.构建通道生产者
fun CoroutineScope.producer(): ReceiveChannel<Int> = produce {//构建通道生产者
    for (i in 1..3) send(i + i)
}

fun main_produce() = runBlocking {
    val produce = producer()
    produce.consumeEach { println("$it") }//迭代每一个生产者
    println("end ..")
}

//3 管道
fun CoroutineScope.produceNumbers(): ReceiveChannel<Int> = produce<Int> {//每次加1 生成无穷个 没有返回类型
    var x = 1
    while (true) send(x++)
}

fun CoroutineScope.square(numbers: ReceiveChannel<Int>): ReceiveChannel<Int> =
    produce {//先收到的,然后处理后再发出
        for (x in numbers) send(x + x)
    }

fun main_pip() = runBlocking {
    val numbers = produceNumbers() //每次加1 生成无穷个 没有返回类型
    val squares = square(numbers) //先收到的,然后处理后再发出
    repeat(3) {//重复3次
        println(squares.receive())
    }
    println("end ..") //完成
    coroutineContext.cancelChildren() // 取消子协程
}
 //4.管道的素数
 fun main_filters() = runBlocking {
     var cur = numberssend(2)//从二开始 2 3 4..
     repeat(10) {//取10个数
         val number = cur.receive()
         println(" $number")
         cur = filters(cur, number)
     }
     coroutineContext.cancelChildren() // cancel all children to let main finish
 }
fun CoroutineScope.numberssend(start: Int) = produce<Int> {//数据每次加1发送
    var x = start
    while (true) send(x++)
}
//从2开始一个数字流,从当前通道获取一个质数,并为找到的每个质数启动新的管道
fun CoroutineScope.filters(numbers: ReceiveChannel<Int>, prime: Int) = produce<Int> {
    for (x in numbers) if (x % prime != 0) send(x)//可以被发送的数整除 然后发送
}
//5.扇出
fun mainFanout() = runBlocking<Unit> {
    val producer = produceNumber()
    repeat(5) {
        launchProcessor(it, producer)
    }
    delay(950)
    producer.cancel() //取消
}

fun CoroutineScope.produceNumber() = produce<Int> {
    var x = 1
    while (true) {
        send(x++) //从1开始和每次加1
        delay(100) //
    }
}

fun CoroutineScope.launchProcessor(id: Int, channel: ReceiveChannel<Int>) = launch {
    for (msg in channel) {
        println("Processor #$id received $msg")
    }
}
//6.扇入
fun main_in() = runBlocking {
    val channel = Channel<String>()
    //两个协程来发送字符串
    launch { sendString(channel, "foo", 200L) }
    launch { sendString(channel, "BAR!", 500L) }
    repeat(6) { // receive first six
        println(channel.receive())
    }
    coroutineContext.cancelChildren() // cancel all children to let main finish
}

suspend fun sendString(channel: SendChannel<String>, s: String, time: Long) {
    while (true) {
        delay(time)
        channel.send(s)
    }
}
//7.带缓冲的通道
fun main_Buffered() = runBlocking<Unit> {
    val channel = Channel<Int>(4) //容量为4
    val sender = launch { // 启动协程
        repeat(10) {
            println("发送的数据 $it")//0-4
            channel.send(it)
        }
    }
    delay(100)//延迟1秒
    sender.cancel() //取消
}
//8.通道是公平的
data class Ball(var hits: Int)
fun main_fair() = runBlocking {
    val table = Channel<Ball>() // a shared table
    launch { player("ping", table) }
    launch { player("pong", table) }
    table.send(Ball(0)) // serve the ball
    delay(1000) // delay 1 second
    coroutineContext.cancelChildren() // game over, cancel them
}
suspend fun player(name: String, table: Channel<Ball>) {
    for (ball in table) { // receive the ball in a loop
        ball.hits++
        println("$name $ball")
        delay(300) // wait a bit
        table.send(ball) // send the ball back
    }

}
//9.计时通道
fun main_Ticker() = runBlocking<Unit> {
    val tickerChannel = ticker(delayMillis = 100, initialDelayMillis = 0) // create ticker channel
    var nextElement = withTimeoutOrNull(1) { tickerChannel.receive() }
    println("Initial element is available immediately: $nextElement") // initial delay hasn't passed yet

    nextElement = withTimeoutOrNull(50) { tickerChannel.receive() } // all subsequent elements has 100ms delay
    println("Next element is not ready in 50 ms: $nextElement")

    nextElement = withTimeoutOrNull(60) { tickerChannel.receive() }
    println("Next element is ready in 100 ms: $nextElement")

    // Emulate large consumption delays
    println("Consumer pauses for 150ms")
    delay(150)
    // Next element is available immediately
    nextElement = withTimeoutOrNull(1) { tickerChannel.receive() }
    println("Next element is available immediately after large consumer delay: $nextElement")
    // Note that the pause between `receive` calls is taken into account and next element arrives faster
    nextElement = withTimeoutOrNull(60) { tickerChannel.receive() }
    println("Next element is ready in 50ms after consumer pause in 150ms: $nextElement")

    tickerChannel.cancel() // indicate that no more elements are needed
}