卷积与反卷积的直观感受:
卷积:
反卷积:
特别说明,此处分析的反卷积主要针对 caffe中DeconvolutionLayer类别来说。
反向传播分析,参考博客:
https://grzegorzgwardys.wordpress.com/2016/04/22/8/
http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
http://www.cnblogs.com/tornadomeet/p/3468450.html
http://blog.csdn.net/ck1798333105/article/details/52369122
http://www.cnblogs.com/pinard/p/6494810.html
反向传播结论: L层局部梯度 δ =L+1层局部梯度*(卷积)核的转秩
卷积核梯度 ▽W=输入*(卷积)本层局部梯度
卷积及反向传播
要想理解反卷积就要首先了解卷积的反向传播方式,因为他们之间有着千丝万缕的联系。
卷积之反向传播
见代码如下:
/
// 正向传播
/
template <typename Dtype>
void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[]->cpu_data();
for (int i = ; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = ; n < this->num_; ++n) {
///forward_cpu_gemm 实现卷积运算
// bottom_data*weight=top_data
this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[]->cpu_data();
this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
}
/*****************************************************************
反向传播
******************************************************************/
template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[]->cpu_data();
Dtype* weight_diff = this->blobs_[]->mutable_cpu_diff();
for (int i = ; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[]) {
Dtype* bias_diff = this->blobs_[]->mutable_cpu_diff();
for (int n = ; n < this->num_; ++n) {
// 计算▽b,偏移量梯度
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[] || propagate_down[i]) {
for (int n = ; n < this->num_; ++n) {
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[]) {
this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_, //计算 ▽W ,权重梯度
top_diff + n * this->top_dim_, weight_diff);
}
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i]) {
重点,backward_cpu_gemm 实现矩阵局部梯度域反向计算
top_diff*weight^T(转制)=bottom_diff 实质上还是卷积运算
this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight, //计算局部梯度δ
bottom_diff + n * this->bottom_dim_);
}
}
}
}
}
从convlayer 与 deconvlayer 对比来看,实现的功能是互逆的。
特别是两者在前向运算与后向计算局部梯度 相互对偶(使用同样的函数),而偏移量的计算方式一致。