题目
题目大意:T组查询,每次询问一个满足x*(x + 1)% (2n) = 0的最小正整数。
T<=100, n<=1e12
思路:
x -> x*(x + 1) % (2n) == 0
转换成 a | 2n, b = 2n | a;
假设 ap = x + 1, x = bq。
联立得到ap - bq = 1的最小正整数解bq。
由于该方程有解的条件的gcd(a, b) = 1.
枚举 时只用枚举a的每个质因子要不要给 2n。
先预处理1e6内的素数,假设为D, 2n的不同种类质因子个数为K。
求解一次扩欧方程时间复杂度为logn
整体时间复杂度
T(n) = O(T(D + 2^K * log n)
AC code;
/*
find min x -> x*(x + 1) % (2n) == 0
-> suppose a | 2n, b = 2n | a;
-> suppose ap = x + 1, x = bq,
->
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = 1e18;
const int maxn = 1e6 + 10;
bool isprime[maxn];
int cntp, prime[maxn];
void init(){
memset(isprime, 1, sizeof(isprime));
cntp = isprime[0] = isprime[1] = 0;
for(int i = 2; i < maxn; ++i){
if(isprime[i]){
prime[++cntp] = i;
}
for(int j = 1; j <= cntp && i * prime[j] < maxn; ++j){
isprime[i * prime[j]] = 0;
if(i % prime[j] == 0) break ;
}
}
}
ll fac[50];
void getfac(ll n){
fac[0] = 0;
for(int i = 1; i <= cntp && prime[i] <= n; ++i){
if(n % prime[i] == 0){
fac[++fac[0]] = 1;
while(n % prime[i] == 0) n /= prime[i], fac[fac[0]] *= prime[i];
}
}
if(n > 1) fac[++fac[0]] = n;
}
ll exgcd(ll a, ll b, ll &x, ll &y){
if(!b) return x = 1, y = 0, a;
ll d = exgcd(b, a % b, x, y);
ll t = x;
x = y, y = t - (a / b) * y;
return d;
}
ll ans;
void dfs(int cur, ll a, ll b){
if(cur == fac[0] + 1){
ll x, y;
exgcd(a, b, x, y);
// cout << "---" << a << " " << b << " " << y << endl;
y = -y % a;
if(y <= 0) y += a;
ans = min(ans, y * b);
return ;
}
dfs(cur + 1, a * fac[cur], b);
dfs(cur + 1, a, b * fac[cur]);
}
int main(){
init();
int T;
scanf("%d", &T);
while(T--){
ll n;
scanf("%lld", &n);
if(n == 1){
puts("1"); continue ;
}
n *= 2;
getfac(n);
ans = INF;
dfs(1, 1, 1);
printf("%lld\n", ans);
}
return 0;
}