Harmonic Number
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample Output
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139
#include
#include
#include
using namespace std;
double C=0.57721566490153286060651209;
double a[10000+10];
void init()
{
a[0]=0;
for(int i=1;i<10000;i++)
{
a[i]=a[i-1]+1.0/i;
}
}
typedef long long ll;
int main()
{
int T;
ll n;
init();
scanf("%d",&T);
for(int ii=1;ii<=T;ii++)
{
scanf("%lld",&n);
double ans=0;
if(n<10000)
{
ans=a[n];
}
else
{
ans=C+log(n)+1.0/(2*n);
}
printf("Case %d: %.10lf\n",ii,ans);
}
return 0;
}
// f(n)=ln(n)+C+1/(2*n);