天天看点

数据结构常用算法

1.3 最大子列和问题

//分治法

int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
    return A > B ? A > C ? A : C : B > C ? B : C;
}
 
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
    int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
 
    int LeftBorderSum, RightBorderSum;
    int center, i;
 
    if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
        if( List[left] > 0 )  return List[left];
        else return 0;
    }
 
    /* 下面是"分"的过程 */
    center = ( left + right ) / 2; /* 找到中分点 */
    /* 递归求得两边子列的最大和 */
    MaxLeftSum = DivideAndConquer( List, left, center );
    MaxRightSum = DivideAndConquer( List, center+1, right );
 
    /* 下面求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0; LeftBorderSum = 0;
    for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
        LeftBorderSum += List[i];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    } /* 左边扫描结束 */
 
    MaxRightBorderSum = 0; RightBorderSum = 0;
    for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
        RightBorderSum += List[i];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    } /* 右边扫描结束 */
 
    /* 下面返回"治"的结果 */
    return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
 
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
    return DivideAndConquer( List, 0, N-1 );
}
           

2.1 线性表及其实现

//线性表的定义与操作——顺序表

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last;
};
 
/* 初始化 */
List MakeEmpty()
{
    List L;
 
    L = (List)malloc(sizeof(struct LNode));
    L->Last = -1;
 
    return L;
}
 
/* 查找 */
#define ERROR -1
 
Position Find( List L, ElementType X )
{
    Position i = 0;
 
    while( i <= L->Last && L->Data[i]!= X )
        i++;
    if ( i > L->Last )  return ERROR; /* 如果没找到,返回错误信息 */
    else  return i;  /* 找到后返回的是存储位置 */
}
 
/* 插入 */
/*注意:在插入位置参数P上与课程视频有所不同,课程视频中i是序列位序(从1开始),这里P是存储下标位置(从0开始),两者差1*/
bool Insert( List L, ElementType X, Position P ) 
{ /* 在L的指定位置P前插入一个新元素X */
    Position i;
 
    if ( L->Last == MAXSIZE-1) {
        /* 表空间已满,不能插入 */
        printf("表满"); 
        return false; 
    }  
    if ( P<0 || P>L->Last+1 ) { /* 检查插入位置的合法性 */
        printf("位置不合法");
        return false; 
    } 
    for( i=L->Last; i>=P; i-- )
        L->Data[i+1] = L->Data[i]; /* 将位置P及以后的元素顺序向后移动 */
    L->Data[P] = X;  /* 新元素插入 */
    L->Last++;       /* Last仍指向最后元素 */
    return true; 
} 
 
/* 删除 */
/*注意:在删除位置参数P上与课程视频有所不同,课程视频中i是序列位序(从1开始),这里P是存储下标位置(从0开始),两者差1*/
bool Delete( List L, Position P )
{ /* 从L中删除指定位置P的元素 */
    Position i;
 
    if( P<0 || P>L->Last ) { /* 检查空表及删除位置的合法性 */
        printf("位置%d不存在元素", P ); 
        return false; 
    }
    for( i=P+1; i<=L->Last; i++ )
        L->Data[i-1] = L->Data[i]; /* 将位置P+1及以后的元素顺序向前移动 */
    L->Last--; /* Last仍指向最后元素 */
    return true;   
}
           

//线性表的定义与操作——链式表

typedef struct LNode *PtrToLNode;
struct LNode {
    ElementType Data;
    PtrToLNode Next;
};
typedef PtrToLNode Position;
typedef PtrToLNode List;
 
/* 查找 */
#define ERROR NULL
 
Position Find( List L, ElementType X )
{
    Position p = L; /* p指向L的第1个结点 */
 
    while ( p && p->Data!=X )
        p = p->Next;
 
    /* 下列语句可以用 return p; 替换 */
    if ( p )
        return p;
    else
        return ERROR;
}
 
/* 带头结点的插入 */
/*注意:在插入位置参数P上与课程视频有所不同,课程视频中i是序列位序(从1开始),这里P是链表结点指针,在P之前插入新结点 */
bool Insert( List L, ElementType X, Position P )
{ /* 这里默认L有头结点 */
    Position tmp, pre;
 
    /* 查找P的前一个结点 */        
    for ( pre=L; pre&&pre->Next!=P; pre=pre->Next ) ;            
    if ( pre==NULL ) { /* P所指的结点不在L中 */
        printf("插入位置参数错误\n");
        return false;
    }
    else { /* 找到了P的前一个结点pre */
        /* 在P前插入新结点 */
        tmp = (Position)malloc(sizeof(struct LNode)); /* 申请、填装结点 */
        tmp->Data = X; 
        tmp->Next = P;
        pre->Next = tmp;
        return true;
    }
}
 
/* 带头结点的删除 */
/*注意:在删除位置参数P上与课程视频有所不同,课程视频中i是序列位序(从1开始),这里P是拟删除结点指针 */
bool Delete( List L, Position P )
{ /* 这里默认L有头结点 */
    Position tmp, pre;
 
    /* 查找P的前一个结点 */        
    for ( pre=L; pre&&pre->Next!=P; pre=pre->Next ) ;            
    if ( pre==NULL || P==NULL) { /* P所指的结点不在L中 */
        printf("删除位置参数错误\n");
        return false;
    }
    else { /* 找到了P的前一个结点pre */
        /* 将P位置的结点删除 */
        pre->Next = P->Next;
        free(P);
        return true;
    }
}
           

2.2 堆栈

//堆栈的定义与操作——顺序存储

typedef int Position;
struct SNode {
    ElementType *Data; /* 存储元素的数组 */
    Position Top;      /* 栈顶指针 */
    int MaxSize;       /* 堆栈最大容量 */
};
typedef struct SNode *Stack;
 
Stack CreateStack( int MaxSize )
{
    Stack S = (Stack)malloc(sizeof(struct SNode));
    S->Data = (ElementType *)malloc(MaxSize * sizeof(ElementType));
    S->Top = -1;
    S->MaxSize = MaxSize;
    return S;
}
 
bool IsFull( Stack S )
{
    return (S->Top == S->MaxSize-1);
}
 
bool Push( Stack S, ElementType X )
{
    if ( IsFull(S) ) {
        printf("堆栈满");
        return false;
    }
    else {
        S->Data[++(S->Top)] = X;
        return true;
    }
}
 
bool IsEmpty( Stack S )
{
    return (S->Top == -1);
}
 
ElementType Pop( Stack S )
{
    if ( IsEmpty(S) ) {
        printf("堆栈空");
        return ERROR; /* ERROR是ElementType的特殊值,标志错误 */
    }
    else 
        return ( S->Data[(S->Top)--] );
}
           

//堆栈的定义与操作——链式存储

typedef struct SNode *PtrToSNode;
struct SNode {
    ElementType Data;
    PtrToSNode Next;
};
typedef PtrToSNode Stack;
 
Stack CreateStack( ) 
{ /* 构建一个堆栈的头结点,返回该结点指针 */
    Stack S;
 
    S = (Stack)malloc(sizeof(struct SNode));
    S->Next = NULL;
    return S;
}
 
bool IsEmpty ( Stack S )
{ /* 判断堆栈S是否为空,若是返回true;否则返回false */
    return ( S->Next == NULL );
}
 
bool Push( Stack S, ElementType X )
{ /* 将元素X压入堆栈S */
    PtrToSNode TmpCell;
 
    TmpCell = (PtrToSNode)malloc(sizeof(struct SNode));
    TmpCell->Data = X;
    TmpCell->Next = S->Next;
    S->Next = TmpCell;
    return true;
}
 
ElementType Pop( Stack S )  
{ /* 删除并返回堆栈S的栈顶元素 */
    PtrToSNode FirstCell;
    ElementType TopElem;
 
    if( IsEmpty(S) ) {
        printf("堆栈空"); 
        return ERROR;
    }
    else {
        FirstCell = S->Next; 
        TopElem = FirstCell->Data;
        S->Next = FirstCell->Next;
        free(FirstCell);
        return TopElem;
    }
}
           

2.3 队列

//队列的定义与操作——顺序存储

typedef int Position;
struct QNode {
    ElementType *Data;     /* 存储元素的数组 */
    Position Front, Rear;  /* 队列的头、尾指针 */
    int MaxSize;           /* 队列最大容量 */
};
typedef struct QNode *Queue;
 
Queue CreateQueue( int MaxSize )
{
    Queue Q = (Queue)malloc(sizeof(struct QNode));
    Q->Data = (ElementType *)malloc(MaxSize * sizeof(ElementType));
    Q->Front = Q->Rear = 0;
    Q->MaxSize = MaxSize;
    return Q;
}
 
bool IsFull( Queue Q )
{
    return ((Q->Rear+1)%Q->MaxSize == Q->Front);
}
 
bool AddQ( Queue Q, ElementType X )
{
    if ( IsFull(Q) ) {
        printf("队列满");
        return false;
    }
    else {
        Q->Rear = (Q->Rear+1)%Q->MaxSize;
        Q->Data[Q->Rear] = X;
        return true;
    }
}
 
bool IsEmpty( Queue Q )
{
    return (Q->Front == Q->Rear);
}
 
ElementType DeleteQ( Queue Q )
{
    if ( IsEmpty(Q) ) { 
        printf("队列空");
        return ERROR;
    }
    else  {
        Q->Front =(Q->Front+1)%Q->MaxSize;
        return  Q->Data[Q->Front];
    }
}
           

//队列的定义与操作——链式存储

typedef struct Node *PtrToNode;
struct Node { /* 队列中的结点 */
    ElementType Data;
    PtrToNode Next;
};
typedef PtrToNode Position;
 
struct QNode {
    Position Front, Rear;  /* 队列的头、尾指针 */
    int MaxSize;           /* 队列最大容量 */
};
typedef struct QNode *Queue;
 
bool IsEmpty( Queue Q )
{
    return ( Q->Front == NULL);
}
 
ElementType DeleteQ( Queue Q )
{
    Position FrontCell; 
    ElementType FrontElem;
     
    if  ( IsEmpty(Q) ) {
        printf("队列空");
        return ERROR;
    }
    else {
        FrontCell = Q->Front;
        if ( Q->Front == Q->Rear ) /* 若队列只有一个元素 */
            Q->Front = Q->Rear = NULL; /* 删除后队列置为空 */
        else                     
            Q->Front = Q->Front->Next;
        FrontElem = FrontCell->Data;
 
        free( FrontCell );  /* 释放被删除结点空间  */
        return  FrontElem;
    }
}
           

3.1 二叉树的链表结构

typedef struct TNode *Position;
typedef Position BinTree; /* 二叉树类型 */
struct TNode{ /* 树结点定义 */
    ElementType Data; /* 结点数据 */
    BinTree Left;     /* 指向左子树 */
    BinTree Right;    /* 指向右子树 */
};
           

3.3 二叉树的4种遍历

void InorderTraversal( BinTree BT )
{
    if( BT ) {
        InorderTraversal( BT->Left );
        /* 此处假设对BT结点的访问就是打印数据 */
        printf("%d ", BT->Data); /* 假设数据为整型 */
        InorderTraversal( BT->Right );
    }
}
 
void PreorderTraversal( BinTree BT )
{
    if( BT ) {
        printf("%d ", BT->Data );
        PreorderTraversal( BT->Left );
        PreorderTraversal( BT->Right );
    }
}
 
void PostorderTraversal( BinTree BT )
{
    if( BT ) {
        PostorderTraversal( BT->Left );
        PostorderTraversal( BT->Right );
        printf("%d ", BT->Data);
    }
}
 
void LevelorderTraversal ( BinTree BT )
{ 
    Queue Q; 
    BinTree T;
 
    if ( !BT ) return; /* 若是空树则直接返回 */
     
    Q = CreatQueue(); /* 创建空队列Q */
    AddQ( Q, BT );
    while ( !IsEmpty(Q) ) {
        T = DeleteQ( Q );
        printf("%d ", T->Data); /* 访问取出队列的结点 */
        if ( T->Left )   AddQ( Q, T->Left );
        if ( T->Right )  AddQ( Q, T->Right );
    }
}
           

4.1 二叉搜索树的插入与删除

BinTree Insert( BinTree BST, ElementType X )
{
    if( !BST ){ /* 若原树为空,生成并返回一个结点的二叉搜索树 */
        BST = (BinTree)malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = BST->Right = NULL;
    }
    else { /* 开始找要插入元素的位置 */
        if( X < BST->Data )
            BST->Left = Insert( BST->Left, X );   /*递归插入左子树*/
        else  if( X > BST->Data )
            BST->Right = Insert( BST->Right, X ); /*递归插入右子树*/
        /* else X已经存在,什么都不做 */
    }
    return BST;
}
 
BinTree Delete( BinTree BST, ElementType X ) 
{ 
    Position Tmp; 
 
    if( !BST ) 
        printf("要删除的元素未找到"); 
    else {
        if( X < BST->Data ) 
            BST->Left = Delete( BST->Left, X );   /* 从左子树递归删除 */
        else if( X > BST->Data ) 
            BST->Right = Delete( BST->Right, X ); /* 从右子树递归删除 */
        else { /* BST就是要删除的结点 */
            /* 如果被删除结点有左右两个子结点 */ 
            if( BST->Left && BST->Right ) {
                /* 从右子树中找最小的元素填充删除结点 */
                Tmp = FindMin( BST->Right );
                BST->Data = Tmp->Data;
                /* 从右子树中删除最小元素 */
                BST->Right = Delete( BST->Right, BST->Data );
            }
            else { /* 被删除结点有一个或无子结点 */
                Tmp = BST; 
                if( !BST->Left )       /* 只有右孩子或无子结点 */
                    BST = BST->Right; 
                else                   /* 只有左孩子 */
                    BST = BST->Left;
                free( Tmp );
            }
        }
    }
    return BST;
}
           

4.2 平衡二叉树——AVL树的旋转与插入

typedef struct AVLNode *Position;
typedef Position AVLTree; /* AVL树类型 */
struct AVLNode{
    ElementType Data; /* 结点数据 */
    AVLTree Left;     /* 指向左子树 */
    AVLTree Right;    /* 指向右子树 */
    int Height;       /* 树高 */
};
 
int Max ( int a, int b )
{
    return a > b ? a : b;
}
 
AVLTree SingleLeftRotation ( AVLTree A )
{ /* 注意:A必须有一个左子结点B */
  /* 将A与B做左单旋,更新A与B的高度,返回新的根结点B */     
 
    AVLTree B = A->Left;
    A->Left = B->Right;
    B->Right = A;
    A->Height = Max( GetHeight(A->Left), GetHeight(A->Right) ) + 1;
    B->Height = Max( GetHeight(B->Left), A->Height ) + 1;
  
    return B;
}
 
AVLTree DoubleLeftRightRotation ( AVLTree A )
{ /* 注意:A必须有一个左子结点B,且B必须有一个右子结点C */
  /* 将A、B与C做两次单旋,返回新的根结点C */
     
    /* 将B与C做右单旋,C被返回 */
    A->Left = SingleRightRotation(A->Left);
    /* 将A与C做左单旋,C被返回 */
    return SingleLeftRotation(A);
}
 
/*************************************/
/* 对称的右单旋与右-左双旋请自己实现 */
/*************************************/
 
AVLTree Insert( AVLTree T, ElementType X )
{ /* 将X插入AVL树T中,并且返回调整后的AVL树 */
    if ( !T ) { /* 若插入空树,则新建包含一个结点的树 */
        T = (AVLTree)malloc(sizeof(struct AVLNode));
        T->Data = X;
        T->Height = 0;
        T->Left = T->Right = NULL;
    } /* if (插入空树) 结束 */
 
    else if ( X < T->Data ) {
        /* 插入T的左子树 */
        T->Left = Insert( T->Left, X);
        /* 如果需要左旋 */
        if ( GetHeight(T->Left)-GetHeight(T->Right) == 2 )
            if ( X < T->Left->Data ) 
               T = SingleLeftRotation(T);      /* 左单旋 */
            else 
               T = DoubleLeftRightRotation(T); /* 左-右双旋 */
    } /* else if (插入左子树) 结束 */
     
    else if ( X > T->Data ) {
        /* 插入T的右子树 */
        T->Right = Insert( T->Right, X );
        /* 如果需要右旋 */
        if ( GetHeight(T->Left)-GetHeight(T->Right) == -2 )
            if ( X > T->Right->Data ) 
               T = SingleRightRotation(T);     /* 右单旋 */
            else 
               T = DoubleRightLeftRotation(T); /* 右-左双旋 */
    } /* else if (插入右子树) 结束 */
 
    /* else X == T->Data,无须插入 */
 
    /* 别忘了更新树高 */
    T->Height = Max( GetHeight(T->Left), GetHeight(T->Right) ) + 1;
     
    return T;
}
           

5.1 堆的定义与操作

typedef struct HNode *Heap; /* 堆的类型定义 */
struct HNode {
    ElementType *Data; /* 存储元素的数组 */
    int Size;          /* 堆中当前元素个数 */
    int Capacity;      /* 堆的最大容量 */
};
typedef Heap MaxHeap; /* 最大堆 */
typedef Heap MinHeap; /* 最小堆 */
 
#define MAXDATA 1000  /* 该值应根据具体情况定义为大于堆中所有可能元素的值 */
 
MaxHeap CreateHeap( int MaxSize )
{ /* 创建容量为MaxSize的空的最大堆 */
 
    MaxHeap H = (MaxHeap)malloc(sizeof(struct HNode));
    H->Data = (ElementType *)malloc((MaxSize+1)*sizeof(ElementType));
    H->Size = 0;
    H->Capacity = MaxSize;
    H->Data[0] = MAXDATA; /* 定义"哨兵"为大于堆中所有可能元素的值*/
 
    return H;
}
 
bool IsFull( MaxHeap H )
{
    return (H->Size == H->Capacity);
}
 
bool Insert( MaxHeap H, ElementType X )
{ /* 将元素X插入最大堆H,其中H->Data[0]已经定义为哨兵 */
    int i;
  
    if ( IsFull(H) ) { 
        printf("最大堆已满");
        return false;
    }
    i = ++H->Size; /* i指向插入后堆中的最后一个元素的位置 */
    for ( ; H->Data[i/2] < X; i/=2 )
        H->Data[i] = H->Data[i/2]; /* 上滤X */
    H->Data[i] = X; /* 将X插入 */
    return true;
}
 
#define ERROR -1 /* 错误标识应根据具体情况定义为堆中不可能出现的元素值 */
 
bool IsEmpty( MaxHeap H )
{
    return (H->Size == 0);
}
 
ElementType DeleteMax( MaxHeap H )
{ /* 从最大堆H中取出键值为最大的元素,并删除一个结点 */
    int Parent, Child;
    ElementType MaxItem, X;
 
    if ( IsEmpty(H) ) {
        printf("最大堆已为空");
        return ERROR;
    }
 
    MaxItem = H->Data[1]; /* 取出根结点存放的最大值 */
    /* 用最大堆中最后一个元素从根结点开始向上过滤下层结点 */
    X = H->Data[H->Size--]; /* 注意当前堆的规模要减小 */
    for( Parent=1; Parent*2<=H->Size; Parent=Child ) {
        Child = Parent * 2;
        if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
            Child++;  /* Child指向左右子结点的较大者 */
        if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            H->Data[Parent] = H->Data[Child];
    }
    H->Data[Parent] = X;
 
    return MaxItem;
} 
 
/*----------- 建造最大堆 -----------*/
void PercDown( MaxHeap H, int p )
{ /* 下滤:将H中以H->Data[p]为根的子堆调整为最大堆 */
    int Parent, Child;
    ElementType X;
 
    X = H->Data[p]; /* 取出根结点存放的值 */
    for( Parent=p; Parent*2<=H->Size; Parent=Child ) {
        Child = Parent * 2;
        if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
            Child++;  /* Child指向左右子结点的较大者 */
        if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            H->Data[Parent] = H->Data[Child];
    }
    H->Data[Parent] = X;
}
 
void BuildHeap( MaxHeap H )
{ /* 调整H->Data[]中的元素,使满足最大堆的有序性  */
  /* 这里假设所有H->Size个元素已经存在H->Data[]中 */
 
    int i;
 
    /* 从最后一个结点的父节点开始,到根结点1 */
    for( i = H->Size/2; i>0; i-- )
        PercDown( H, i );
}
           

5.3 集合的定义与并查操作

#define MAXN 1000                  /* 集合最大元素个数 */
typedef int ElementType;           /* 默认元素可以用非负整数表示 */
typedef int SetName;               /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MAXN]; /* 假设集合元素下标从0开始 */
 
void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
    /* 保证小集合并入大集合 */
    if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
        S[Root2] += S[Root1];     /* 集合1并入集合2  */
        S[Root1] = Root2;
    }
    else {                         /* 如果集合1比较大 */
        S[Root1] += S[Root2];     /* 集合2并入集合1  */
        S[Root2] = Root1;
    }
}
 
SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
    if ( S[X] < 0 ) /* 找到集合的根 */
        return X;
    else
        return S[X] = Find( S, S[X] ); /* 路径压缩 */
}
           

6.1 图的建立——邻接矩阵表示

/* 图的邻接矩阵表示法 */
 
#define MaxVertexNum 100    /* 最大顶点数设为100 */
#define INFINITY 65535        /* ∞设为双字节无符号整数的最大值65535*/
typedef int Vertex;         /* 用顶点下标表示顶点,为整型 */
typedef int WeightType;        /* 边的权值设为整型 */
typedef char DataType;        /* 顶点存储的数据类型设为字符型 */
 
/* 边的定义 */
typedef struct ENode *PtrToENode;
struct ENode{
    Vertex V1, V2;      /* 有向边<V1, V2> */
    WeightType Weight;  /* 权重 */
};
typedef PtrToENode Edge;
        
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;  /* 顶点数 */
    int Ne;  /* 边数   */
    WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
    DataType Data[MaxVertexNum];      /* 存顶点的数据 */
    /* 注意:很多情况下,顶点无数据,此时Data[]可以不用出现 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
 
 
 
MGraph CreateGraph( int VertexNum )
{ /* 初始化一个有VertexNum个顶点但没有边的图 */
    Vertex V, W;
    MGraph Graph;
     
    Graph = (MGraph)malloc(sizeof(struct GNode)); /* 建立图 */
    Graph->Nv = VertexNum;
    Graph->Ne = 0;
    /* 初始化邻接矩阵 */
    /* 注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) */
    for (V=0; V<Graph->Nv; V++)
        for (W=0; W<Graph->Nv; W++)  
            Graph->G[V][W] = INFINITY;
             
    return Graph; 
}
        
void InsertEdge( MGraph Graph, Edge E )
{
     /* 插入边 <V1, V2> */
     Graph->G[E->V1][E->V2] = E->Weight;    
     /* 若是无向图,还要插入边<V2, V1> */
     Graph->G[E->V2][E->V1] = E->Weight;
}
 
MGraph BuildGraph()
{
    MGraph Graph;
    Edge E;
    Vertex V;
    int Nv, i;
     
    scanf("%d", &Nv);   /* 读入顶点个数 */
    Graph = CreateGraph(Nv); /* 初始化有Nv个顶点但没有边的图 */ 
     
    scanf("%d", &(Graph->Ne));   /* 读入边数 */
    if ( Graph->Ne != 0 ) { /* 如果有边 */ 
        E = (Edge)malloc(sizeof(struct ENode)); /* 建立边结点 */ 
        /* 读入边,格式为"起点 终点 权重",插入邻接矩阵 */
        for (i=0; i<Graph->Ne; i++) {
            scanf("%d %d %d", &E->V1, &E->V2, &E->Weight); 
            /* 注意:如果权重不是整型,Weight的读入格式要改 */
            InsertEdge( Graph, E );
        }
    } 
 
    /* 如果顶点有数据的话,读入数据 */
    for (V=0; V<Graph->Nv; V++) 
        scanf(" %c", &(Graph->Data[V]));
 
    return Graph;
}
           

//图的建立——邻接表表示

/* 图的邻接表表示法 */
 
#define MaxVertexNum 100    /* 最大顶点数设为100 */
typedef int Vertex;         /* 用顶点下标表示顶点,为整型 */
typedef int WeightType;        /* 边的权值设为整型 */
typedef char DataType;        /* 顶点存储的数据类型设为字符型 */
 
/* 边的定义 */
typedef struct ENode *PtrToENode;
struct ENode{
    Vertex V1, V2;      /* 有向边<V1, V2> */
    WeightType Weight;  /* 权重 */
};
typedef PtrToENode Edge;
 
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;        /* 邻接点下标 */
    WeightType Weight;  /* 边权重 */
    PtrToAdjVNode Next;    /* 指向下一个邻接点的指针 */
};
 
/* 顶点表头结点的定义 */
typedef struct Vnode{
    PtrToAdjVNode FirstEdge;/* 边表头指针 */
    DataType Data;            /* 存顶点的数据 */
    /* 注意:很多情况下,顶点无数据,此时Data可以不用出现 */
} AdjList[MaxVertexNum];    /* AdjList是邻接表类型 */
 
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;     /* 顶点数 */
    int Ne;     /* 边数   */
    AdjList G;  /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
 
 
 
LGraph CreateGraph( int VertexNum )
{ /* 初始化一个有VertexNum个顶点但没有边的图 */
    Vertex V;
    LGraph Graph;
     
    Graph = (LGraph)malloc( sizeof(struct GNode) ); /* 建立图 */
    Graph->Nv = VertexNum;
    Graph->Ne = 0;
    /* 初始化邻接表头指针 */
    /* 注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) */
       for (V=0; V<Graph->Nv; V++)
        Graph->G[V].FirstEdge = NULL;
             
    return Graph; 
}
        
void InsertEdge( LGraph Graph, Edge E )
{
    PtrToAdjVNode NewNode;
     
    /* 插入边 <V1, V2> */
    /* 为V2建立新的邻接点 */
    NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
    NewNode->AdjV = E->V2;
    NewNode->Weight = E->Weight;
    /* 将V2插入V1的表头 */
    NewNode->Next = Graph->G[E->V1].FirstEdge;
    Graph->G[E->V1].FirstEdge = NewNode;
         
    /* 若是无向图,还要插入边 <V2, V1> */
    /* 为V1建立新的邻接点 */
    NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
    NewNode->AdjV = E->V1;
    NewNode->Weight = E->Weight;
    /* 将V1插入V2的表头 */
    NewNode->Next = Graph->G[E->V2].FirstEdge;
    Graph->G[E->V2].FirstEdge = NewNode;
}
 
LGraph BuildGraph()
{
    LGraph Graph;
    Edge E;
    Vertex V;
    int Nv, i;
     
    scanf("%d", &Nv);   /* 读入顶点个数 */
    Graph = CreateGraph(Nv); /* 初始化有Nv个顶点但没有边的图 */ 
     
    scanf("%d", &(Graph->Ne));   /* 读入边数 */
    if ( Graph->Ne != 0 ) { /* 如果有边 */ 
        E = (Edge)malloc( sizeof(struct ENode) ); /* 建立边结点 */ 
        /* 读入边,格式为"起点 终点 权重",插入邻接矩阵 */
        for (i=0; i<Graph->Ne; i++) {
            scanf("%d %d %d", &E->V1, &E->V2, &E->Weight); 
            /* 注意:如果权重不是整型,Weight的读入格式要改 */
            InsertEdge( Graph, E );
        }
    } 
 
    /* 如果顶点有数据的话,读入数据 */
    for (V=0; V<Graph->Nv; V++) 
        scanf(" %c", &(Graph->G[V].Data));
 
    return Graph;
}
           

6.2 图的遍历

//邻接表存储的图 - DFS

/* 邻接表存储的图 - DFS */
 
void Visit( Vertex V )
{
    printf("正在访问顶点%d\n", V);
}
 
/* Visited[]为全局变量,已经初始化为false */
void DFS( LGraph Graph, Vertex V, void (*Visit)(Vertex) )
{   /* 以V为出发点对邻接表存储的图Graph进行DFS搜索 */
    PtrToAdjVNode W;
     
    Visit( V ); /* 访问第V个顶点 */
    Visited[V] = true; /* 标记V已访问 */
 
    for( W=Graph->G[V].FirstEdge; W; W=W->Next ) /* 对V的每个邻接点W->AdjV */
        if ( !Visited[W->AdjV] )    /* 若W->AdjV未被访问 */
            DFS( Graph, W->AdjV, Visit );    /* 则递归访问之 */
}
           

//邻接矩阵存储的图 - BFS

/* 邻接矩阵存储的图 - BFS */
 
/* IsEdge(Graph, V, W)检查<V, W>是否图Graph中的一条边,即W是否V的邻接点。  */
/* 此函数根据图的不同类型要做不同的实现,关键取决于对不存在的边的表示方法。*/
/* 例如对有权图, 如果不存在的边被初始化为INFINITY, 则函数实现如下:         */
bool IsEdge( MGraph Graph, Vertex V, Vertex W )
{
    return Graph->G[V][W]<INFINITY ? true : false;
}
 
/* Visited[]为全局变量,已经初始化为false */
void BFS ( MGraph Graph, Vertex S, void (*Visit)(Vertex) )
{   /* 以S为出发点对邻接矩阵存储的图Graph进行BFS搜索 */
    Queue Q;     
    Vertex V, W;
 
    Q = CreateQueue( MaxSize ); /* 创建空队列, MaxSize为外部定义的常数 */
    /* 访问顶点S:此处可根据具体访问需要改写 */
    Visit( S );
    Visited[S] = true; /* 标记S已访问 */
    AddQ(Q, S); /* S入队列 */
     
    while ( !IsEmpty(Q) ) {
        V = DeleteQ(Q);  /* 弹出V */
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            /* 若W是V的邻接点并且未访问过 */
            if ( !Visited[W] && IsEdge(Graph, V, W) ) {
                /* 访问顶点W */
                Visit( W );
                Visited[W] = true; /* 标记W已访问 */
                AddQ(Q, W); /* W入队列 */
            }
    } /* while结束*/
}
           

7.1 最短路径问题

//最短路径问题

/* 邻接表存储 - 无权图的单源最短路算法 */
 
/* dist[]和path[]全部初始化为-1 */
void Unweighted ( LGraph Graph, int dist[], int path[], Vertex S )
{
    Queue Q;
    Vertex V;
    PtrToAdjVNode W;
     
    Q = CreateQueue( Graph->Nv ); /* 创建空队列, MaxSize为外部定义的常数 */
    dist[S] = 0; /* 初始化源点 */
    AddQ (Q, S);
 
    while( !IsEmpty(Q) ){
        V = DeleteQ(Q);
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next ) /* 对V的每个邻接点W->AdjV */
            if ( dist[W->AdjV]==-1 ) { /* 若W->AdjV未被访问过 */
                dist[W->AdjV] = dist[V]+1; /* W->AdjV到S的距离更新 */
                path[W->AdjV] = V; /* 将V记录在S到W->AdjV的路径上 */
                AddQ(Q, W->AdjV);
            }
    } /* while结束*/
}
           
/* 邻接矩阵存储 - 有权图的单源最短路算法 */
 
Vertex FindMinDist( MGraph Graph, int dist[], int collected[] )
{ /* 返回未被收录顶点中dist最小者 */
    Vertex MinV, V;
    int MinDist = INFINITY;
 
    for (V=0; V<Graph->Nv; V++) {
        if ( collected[V]==false && dist[V]<MinDist) {
            /* 若V未被收录,且dist[V]更小 */
            MinDist = dist[V]; /* 更新最小距离 */
            MinV = V; /* 更新对应顶点 */
        }
    }
    if (MinDist < INFINITY) /* 若找到最小dist */
        return MinV; /* 返回对应的顶点下标 */
    else return ERROR;  /* 若这样的顶点不存在,返回错误标记 */
}
 
bool Dijkstra( MGraph Graph, int dist[], int path[], Vertex S )
{
    int collected[MaxVertexNum];
    Vertex V, W;
 
    /* 初始化:此处默认邻接矩阵中不存在的边用INFINITY表示 */
    for ( V=0; V<Graph->Nv; V++ ) {
        dist[V] = Graph->G[S][V];
        if ( dist[V]<INFINITY )
            path[V] = S;
        else
            path[V] = -1;
        collected[V] = false;
    }
    /* 先将起点收入集合 */
    dist[S] = 0;
    collected[S] = true;
 
    while (1) {
        /* V = 未被收录顶点中dist最小者 */
        V = FindMinDist( Graph, dist, collected );
        if ( V==ERROR ) /* 若这样的V不存在 */
            break;      /* 算法结束 */
        collected[V] = true;  /* 收录V */
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            /* 若W是V的邻接点并且未被收录 */
            if ( collected[W]==false && Graph->G[V][W]<INFINITY ) {
                if ( Graph->G[V][W]<0 ) /* 若有负边 */
                    return false; /* 不能正确解决,返回错误标记 */
                /* 若收录V使得dist[W]变小 */
                if ( dist[V]+Graph->G[V][W] < dist[W] ) {
                    dist[W] = dist[V]+Graph->G[V][W]; /* 更新dist[W] */
                    path[W] = V; /* 更新S到W的路径 */
                }
            }
    } /* while结束*/
    return true; /* 算法执行完毕,返回正确标记 */
}
           
/* 邻接矩阵存储 - 多源最短路算法 */
 
bool Floyd( MGraph Graph, WeightType D[][MaxVertexNum], Vertex path[][MaxVertexNum] )
{
    Vertex i, j, k;
 
    /* 初始化 */
    for ( i=0; i<Graph->Nv; i++ )
        for( j=0; j<Graph->Nv; j++ ) {
            D[i][j] = Graph->G[i][j];
            path[i][j] = -1;
        }
 
    for( k=0; k<Graph->Nv; k++ )
        for( i=0; i<Graph->Nv; i++ )
            for( j=0; j<Graph->Nv; j++ )
                if( D[i][k] + D[k][j] < D[i][j] ) {
                    D[i][j] = D[i][k] + D[k][j];
                    if ( i==j && D[i][j]<0 ) /* 若发现负值圈 */
                        return false; /* 不能正确解决,返回错误标记 */
                    path[i][j] = k;
                }
    return true; /* 算法执行完毕,返回正确标记 */
}
           

8.1 最小生成树问题

/* 邻接矩阵存储 - Prim最小生成树算法 */
 
Vertex FindMinDist( MGraph Graph, WeightType dist[] )
{ /* 返回未被收录顶点中dist最小者 */
    Vertex MinV, V;
    WeightType MinDist = INFINITY;
 
    for (V=0; V<Graph->Nv; V++) {
        if ( dist[V]!=0 && dist[V]<MinDist) {
            /* 若V未被收录,且dist[V]更小 */
            MinDist = dist[V]; /* 更新最小距离 */
            MinV = V; /* 更新对应顶点 */
        }
    }
    if (MinDist < INFINITY) /* 若找到最小dist */
        return MinV; /* 返回对应的顶点下标 */
    else return ERROR;  /* 若这样的顶点不存在,返回-1作为标记 */
}
 
int Prim( MGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType dist[MaxVertexNum], TotalWeight;
    Vertex parent[MaxVertexNum], V, W;
    int VCount;
    Edge E;
     
    /* 初始化。默认初始点下标是0 */
       for (V=0; V<Graph->Nv; V++) {
        /* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */
           dist[V] = Graph->G[0][V];
           parent[V] = 0; /* 暂且定义所有顶点的父结点都是初始点0 */ 
    }
    TotalWeight = 0; /* 初始化权重和     */
    VCount = 0;      /* 初始化收录的顶点数 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */
            
    /* 将初始点0收录进MST */
    dist[0] = 0;
    VCount ++;
    parent[0] = -1; /* 当前树根是0 */
 
    while (1) {
        V = FindMinDist( Graph, dist );
        /* V = 未被收录顶点中dist最小者 */
        if ( V==ERROR ) /* 若这样的V不存在 */
            break;   /* 算法结束 */
             
        /* 将V及相应的边<parent[V], V>收录进MST */
        E->V1 = parent[V];
        E->V2 = V;
        E->Weight = dist[V];
        InsertEdge( MST, E );
        TotalWeight += dist[V];
        dist[V] = 0;
        VCount++;
         
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            if ( dist[W]!=0 && Graph->G[V][W]<INFINITY ) {
            /* 若W是V的邻接点并且未被收录 */
                if ( Graph->G[V][W] < dist[W] ) {
                /* 若收录V使得dist[W]变小 */
                    dist[W] = Graph->G[V][W]; /* 更新dist[W] */
                    parent[W] = V; /* 更新树 */
                }
            }
    } /* while结束*/
    if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */
       TotalWeight = ERROR;
    return TotalWeight;   /* 算法执行完毕,返回最小权重和或错误标记 */
}
           
/* 邻接表存储 - Kruskal最小生成树算法 */
 
/*-------------------- 顶点并查集定义 --------------------*/
typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */
typedef Vertex SetName;     /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */
 
void InitializeVSet( SetType S, int N )
{ /* 初始化并查集 */
    ElementType X;
 
    for ( X=0; X<N; X++ ) S[X] = -1;
}
 
void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
    /* 保证小集合并入大集合 */
    if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
        S[Root2] += S[Root1];     /* 集合1并入集合2  */
        S[Root1] = Root2;
    }
    else {                         /* 如果集合1比较大 */
        S[Root1] += S[Root2];     /* 集合2并入集合1  */
        S[Root2] = Root1;
    }
}
 
SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
    if ( S[X] < 0 ) /* 找到集合的根 */
        return X;
    else
        return S[X] = Find( S, S[X] ); /* 路径压缩 */
}
 
bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 )
{ /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */
    Vertex Root1, Root2;
 
    Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */
    Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */
 
    if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */
        return false;
    else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */
        Union( VSet, Root1, Root2 );
        return true;
    }
}
/*-------------------- 并查集定义结束 --------------------*/
 
/*-------------------- 边的最小堆定义 --------------------*/
void PercDown( Edge ESet, int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p )    */
  /* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */
    int Parent, Child;
    struct ENode X;
 
    X = ESet[p]; /* 取出根结点存放的值 */
    for( Parent=p; (Parent*2+1)<N; Parent=Child ) {
        Child = Parent * 2 + 1;
        if( (Child!=N-1) && (ESet[Child].Weight>ESet[Child+1].Weight) )
            Child++;  /* Child指向左右子结点的较小者 */
        if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            ESet[Parent] = ESet[Child];
    }
    ESet[Parent] = X;
}
 
void InitializeESet( LGraph Graph, Edge ESet )
{ /* 将图的边存入数组ESet,并且初始化为最小堆 */
    Vertex V;
    PtrToAdjVNode W;
    int ECount;
 
    /* 将图的边存入数组ESet */
    ECount = 0;
    for ( V=0; V<Graph->Nv; V++ )
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */
                ESet[ECount].V1 = V;
                ESet[ECount].V2 = W->AdjV;
                ESet[ECount++].Weight = W->Weight;
            }
    /* 初始化为最小堆 */
    for ( ECount=Graph->Ne/2; ECount>=0; ECount-- )
        PercDown( ESet, ECount, Graph->Ne );
}
 
int GetEdge( Edge ESet, int CurrentSize )
{ /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */
 
    /* 将最小边与当前堆的最后一个位置的边交换 */
    Swap( &ESet[0], &ESet[CurrentSize-1]);
    /* 将剩下的边继续调整成最小堆 */
    PercDown( ESet, 0, CurrentSize-1 );
 
    return CurrentSize-1; /* 返回最小边所在位置 */
}
/*-------------------- 最小堆定义结束 --------------------*/
 
 
int Kruskal( LGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType TotalWeight;
    int ECount, NextEdge;
    SetType VSet; /* 顶点数组 */
    Edge ESet;    /* 边数组 */
 
    InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */
    ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne );
    InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    TotalWeight = 0; /* 初始化权重和     */
    ECount = 0;      /* 初始化收录的边数 */
 
    NextEdge = Graph->Ne; /* 原始边集的规模 */
    while ( ECount < Graph->Nv-1 ) {  /* 当收集的边不足以构成树时 */
        NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */
        if (NextEdge < 0) /* 边集已空 */
            break;
        /* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */
        if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) {
            /* 将该边插入MST */
            InsertEdge( MST, ESet+NextEdge );
            TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */
            ECount++; /* 生成树中边数加1 */
        }
    }
    if ( ECount < Graph->Nv-1 )
        TotalWeight = -1; /* 设置错误标记,表示生成树不存在 */
 
    return TotalWeight;
}
           

8.2 拓扑排序

/* 邻接表存储 - 拓扑排序算法 */
 
bool TopSort( LGraph Graph, Vertex TopOrder[] )
{ /* 对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 */
    int Indegree[MaxVertexNum], cnt;
    Vertex V;
    PtrToAdjVNode W;
       Queue Q = CreateQueue( Graph->Nv );
  
    /* 初始化Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        Indegree[V] = 0;
         
    /* 遍历图,得到Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        for (W=Graph->G[V].FirstEdge; W; W=W->Next)
            Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */
             
    /* 将所有入度为0的顶点入列 */
    for (V=0; V<Graph->Nv; V++)
        if ( Indegree[V]==0 )
            AddQ(Q, V);
             
    /* 下面进入拓扑排序 */ 
    cnt = 0; 
    while( !IsEmpty(Q) ){
        V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
        TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
        /* 对V的每个邻接点W->AdjV */
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( --Indegree[W->AdjV] == 0 )/* 若删除V使得W->AdjV入度为0 */
                AddQ(Q, W->AdjV); /* 则该顶点入列 */ 
    } /* while结束*/
     
    if ( cnt != Graph->Nv )
        return false; /* 说明图中有回路, 返回不成功标志 */ 
    else
        return true;
}
           

9.1 插入排序

void InsertionSort( ElementType A[], int N )
{ /* 插入排序 */
     int P, i;
     ElementType Tmp;
      
     for ( P=1; P<N; P++ ) {
         Tmp = A[P]; /* 取出未排序序列中的第一个元素*/
         for ( i=P; i>0 && A[i-1]>Tmp; i-- )
             A[i] = A[i-1]; /*依次与已排序序列中元素比较并右移*/
         A[i] = Tmp; /* 放进合适的位置 */
     }
}
           

9.2 希尔排序

void ShellSort( ElementType A[], int N )
{ /* 希尔排序 - 用Sedgewick增量序列 */
     int Si, D, P, i;
     ElementType Tmp;
     /* 这里只列出一小部分增量 */
     int Sedgewick[] = {929, 505, 209, 109, 41, 19, 5, 1, 0};
      
     for ( Si=0; Sedgewick[Si]>=N; Si++ ) 
         ; /* 初始的增量Sedgewick[Si]不能超过待排序列长度 */
 
     for ( D=Sedgewick[Si]; D>0; D=Sedgewick[++Si] )
         for ( P=D; P<N; P++ ) { /* 插入排序*/
             Tmp = A[P];
             for ( i=P; i>=D && A[i-D]>Tmp; i-=D )
                 A[i] = A[i-D];
             A[i] = Tmp;
         }
}
           

9.3 堆排序

void Swap( ElementType *a, ElementType *b )
{
     ElementType t = *a; *a = *b; *b = t;
}
  
void PercDown( ElementType A[], int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p )    */
  /* 将N个元素的数组中以A[p]为根的子堆调整为最大堆 */
    int Parent, Child;
    ElementType X;
 
    X = A[p]; /* 取出根结点存放的值 */
    for( Parent=p; (Parent*2+1)<N; Parent=Child ) {
        Child = Parent * 2 + 1;
        if( (Child!=N-1) && (A[Child]<A[Child+1]) )
            Child++;  /* Child指向左右子结点的较大者 */
        if( X >= A[Child] ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            A[Parent] = A[Child];
    }
    A[Parent] = X;
}
 
void HeapSort( ElementType A[], int N ) 
{ /* 堆排序 */
     int i;
       
     for ( i=N/2-1; i>=0; i-- )/* 建立最大堆 */
         PercDown( A, i, N );
      
     for ( i=N-1; i>0; i-- ) {
         /* 删除最大堆顶 */
         Swap( &A[0], &A[i] ); /* 见代码7.1 */
         PercDown( A, 0, i );
     }
}
           

9.4 归并排序

/* 归并排序 - 递归实现 */
 
/* L = 左边起始位置, R = 右边起始位置, RightEnd = 右边终点位置*/
void Merge( ElementType A[], ElementType TmpA[], int L, int R, int RightEnd )
{ /* 将有序的A[L]~A[R-1]和A[R]~A[RightEnd]归并成一个有序序列 */
     int LeftEnd, NumElements, Tmp;
     int i;
      
     LeftEnd = R - 1; /* 左边终点位置 */
     Tmp = L;         /* 有序序列的起始位置 */
     NumElements = RightEnd - L + 1;
      
     while( L <= LeftEnd && R <= RightEnd ) {
         if ( A[L] <= A[R] )
             TmpA[Tmp++] = A[L++]; /* 将左边元素复制到TmpA */
         else
             TmpA[Tmp++] = A[R++]; /* 将右边元素复制到TmpA */
     }
 
     while( L <= LeftEnd )
         TmpA[Tmp++] = A[L++]; /* 直接复制左边剩下的 */
     while( R <= RightEnd )
         TmpA[Tmp++] = A[R++]; /* 直接复制右边剩下的 */
          
     for( i = 0; i < NumElements; i++, RightEnd -- )
         A[RightEnd] = TmpA[RightEnd]; /* 将有序的TmpA[]复制回A[] */
}
 
void Msort( ElementType A[], ElementType TmpA[], int L, int RightEnd )
{ /* 核心递归排序函数 */ 
     int Center;
      
     if ( L < RightEnd ) {
          Center = (L+RightEnd) / 2;
          Msort( A, TmpA, L, Center );              /* 递归解决左边 */ 
          Msort( A, TmpA, Center+1, RightEnd );     /* 递归解决右边 */  
          Merge( A, TmpA, L, Center+1, RightEnd );  /* 合并两段有序序列 */ 
     }
}
 
void MergeSort( ElementType A[], int N )
{ /* 归并排序 */
     ElementType *TmpA;
     TmpA = (ElementType *)malloc(N*sizeof(ElementType));
      
     if ( TmpA != NULL ) {
          Msort( A, TmpA, 0, N-1 );
          free( TmpA );
     }
     else printf( "空间不足" );
}
           
/* 归并排序 - 循环实现 */
/* 这里Merge函数在递归版本中给出 */
 
/* length = 当前有序子列的长度*/
void Merge_pass( ElementType A[], ElementType TmpA[], int N, int length )
{ /* 两两归并相邻有序子列 */
     int i, j;
       
     for ( i=0; i <= N-2*length; i += 2*length )
         Merge( A, TmpA, i, i+length, i+2*length-1 );
     if ( i+length < N ) /* 归并最后2个子列*/
         Merge( A, TmpA, i, i+length, N-1);
     else /* 最后只剩1个子列*/
         for ( j = i; j < N; j++ ) TmpA[j] = A[j];
}
 
void Merge_Sort( ElementType A[], int N )
{ 
     int length; 
     ElementType *TmpA;
      
     length = 1; /* 初始化子序列长度*/
     TmpA = malloc( N * sizeof( ElementType ) );
     if ( TmpA != NULL ) {
          while( length < N ) {
              Merge_pass( A, TmpA, N, length );
              length *= 2;
              Merge_pass( TmpA, A, N, length );
              length *= 2;
          }
          free( TmpA );
     }
     else printf( "空间不足" );
}
           

10.1 快速排序

/* 快速排序 - 直接调用库函数 */
 
#include <stdlib.h>
 
/*---------------简单整数排序--------------------*/
int compare(const void *a, const void *b)
{ /* 比较两整数。非降序排列 */
    return (*(int*)a - *(int*)b);
}
/* 调用接口 */ 
qsort(A, N, sizeof(int), compare);
/*---------------简单整数排序--------------------*/
 
 
/*--------------- 一般情况下,对结构体Node中的某键值key排序 ---------------*/
struct Node {
    int key1, key2;
} A[MAXN];
  
int compare2keys(const void *a, const void *b)
{ /* 比较两种键值:按key1非升序排列;如果key1相等,则按key2非降序排列 */
    int k;
    if ( ((const struct Node*)a)->key1 < ((const struct Node*)b)->key1 )
        k = 1;
    else if ( ((const struct Node*)a)->key1 > ((const struct Node*)b)->key1 )
        k = -1;
    else { /* 如果key1相等 */
        if ( ((const struct Node*)a)->key2 < ((const struct Node*)b)->key2 )
            k = -1;
        else
            k = 1;
    }
    return k;
}
/* 调用接口 */ 
qsort(A, N, sizeof(struct Node), compare2keys);
/*--------------- 一般情况下,对结构体Node中的某键值key排序 ---------------*/
           
/* 快速排序——自实现*/
 
ElementType Median3( ElementType A[], int Left, int Right )
{ 
    int Center = (Left+Right) / 2;
    if ( A[Left] > A[Center] )
        Swap( &A[Left], &A[Center] );
    if ( A[Left] > A[Right] )
        Swap( &A[Left], &A[Right] );
    if ( A[Center] > A[Right] )
        Swap( &A[Center], &A[Right] );
    /* 此时A[Left] <= A[Center] <= A[Right] */
    Swap( &A[Center], &A[Right-1] ); /* 将基准Pivot藏到右边*/
    /* 只需要考虑A[Left+1] … A[Right-2] */
    return  A[Right-1];  /* 返回基准Pivot */
}
 
void Qsort( ElementType A[], int Left, int Right )
{ /* 核心递归函数 */ 
     int Pivot, Cutoff, Low, High;
       
     if ( Cutoff <= Right-Left ) { /* 如果序列元素充分多,进入快排 */
          Pivot = Median3( A, Left, Right ); /* 选基准 */ 
          Low = Left; High = Right-1;
          while (1) { /*将序列中比基准小的移到基准左边,大的移到右边*/
               while ( A[++Low] < Pivot ) ;
               while ( A[--High] > Pivot ) ;
               if ( Low < High ) Swap( &A[Low], &A[High] );
               else break;
          }
          Swap( &A[Low], &A[Right-1] );   /* 将基准换到正确的位置 */ 
          Qsort( A, Left, Low-1 );    /* 递归解决左边 */ 
          Qsort( A, Low+1, Right );   /* 递归解决右边 */  
     }
     else InsertionSort( A+Left, Right-Left+1 ); /* 元素太少,用简单排序 */ 
}
 
void QuickSort( ElementType A[], int N )
{ /* 统一接口 */
     Qsort( A, 0, N-1 );
}
           

10.3 基数排序

/* 基数排序 - 次位优先 */
 
/* 假设元素最多有MaxDigit个关键字,基数全是同样的Radix */
#define MaxDigit 4
#define Radix 10
 
/* 桶元素结点 */
typedef struct Node *PtrToNode;
struct Node {
    int key;
    PtrToNode next;
};
 
/* 桶头结点 */
struct HeadNode {
    PtrToNode head, tail;
};
typedef struct HeadNode Bucket[Radix];
  
int GetDigit ( int X, int D )
{ /* 默认次位D=1, 主位D<=MaxDigit */
    int d, i;
     
    for (i=1; i<=D; i++) {
        d = X % Radix;
        X /= Radix;
    }
    return d;
}
 
void LSDRadixSort( ElementType A[], int N )
{ /* 基数排序 - 次位优先 */
     int D, Di, i;
     Bucket B;
     PtrToNode tmp, p, List = NULL; 
      
     for (i=0; i<Radix; i++) /* 初始化每个桶为空链表 */
         B[i].head = B[i].tail = NULL;
     for (i=0; i<N; i++) { /* 将原始序列逆序存入初始链表List */
         tmp = (PtrToNode)malloc(sizeof(struct Node));
         tmp->key = A[i];
         tmp->next = List;
         List = tmp;
     }
     /* 下面开始排序 */ 
     for (D=1; D<=MaxDigit; D++) { /* 对数据的每一位循环处理 */
         /* 下面是分配的过程 */
         p = List;
         while (p) {
             Di = GetDigit(p->key, D); /* 获得当前元素的当前位数字 */
             /* 从List中摘除 */
             tmp = p; p = p->next;
             /* 插入B[Di]号桶尾 */
             tmp->next = NULL;
             if (B[Di].head == NULL)
                 B[Di].head = B[Di].tail = tmp;
             else {
                 B[Di].tail->next = tmp;
                 B[Di].tail = tmp;
             }
         }
         /* 下面是收集的过程 */
         List = NULL; 
         for (Di=Radix-1; Di>=0; Di--) { /* 将每个桶的元素顺序收集入List */
             if (B[Di].head) { /* 如果桶不为空 */
                 /* 整桶插入List表头 */
                 B[Di].tail->next = List;
                 List = B[Di].head;
                 B[Di].head = B[Di].tail = NULL; /* 清空桶 */
             }
         }
     }
     /* 将List倒入A[]并释放空间 */
     for (i=0; i<N; i++) {
        tmp = List;
        List = List->next;
        A[i] = tmp->key;
        free(tmp);
     } 
}
           
/* 基数排序 - 主位优先 */
 
/* 假设元素最多有MaxDigit个关键字,基数全是同样的Radix */
 
#define MaxDigit 4
#define Radix 10
 
/* 桶元素结点 */
typedef struct Node *PtrToNode;
struct Node{
    int key;
    PtrToNode next;
};
 
/* 桶头结点 */
struct HeadNode {
    PtrToNode head, tail;
};
typedef struct HeadNode Bucket[Radix];
  
int GetDigit ( int X, int D )
{ /* 默认次位D=1, 主位D<=MaxDigit */
    int d, i;
     
    for (i=1; i<=D; i++) {
        d = X%Radix;
        X /= Radix;
    }
    return d;
}
 
void MSD( ElementType A[], int L, int R, int D )
{ /* 核心递归函数: 对A[L]...A[R]的第D位数进行排序 */
     int Di, i, j;
     Bucket B;
     PtrToNode tmp, p, List = NULL; 
     if (D==0) return; /* 递归终止条件 */
      
     for (i=0; i<Radix; i++) /* 初始化每个桶为空链表 */
         B[i].head = B[i].tail = NULL;
     for (i=L; i<=R; i++) { /* 将原始序列逆序存入初始链表List */
         tmp = (PtrToNode)malloc(sizeof(struct Node));
         tmp->key = A[i];
         tmp->next = List;
         List = tmp;
     }
     /* 下面是分配的过程 */
     p = List;
     while (p) {
         Di = GetDigit(p->key, D); /* 获得当前元素的当前位数字 */
         /* 从List中摘除 */
         tmp = p; p = p->next;
         /* 插入B[Di]号桶 */
         if (B[Di].head == NULL) B[Di].tail = tmp;
         tmp->next = B[Di].head;
         B[Di].head = tmp;
     }
     /* 下面是收集的过程 */
     i = j = L; /* i, j记录当前要处理的A[]的左右端下标 */
     for (Di=0; Di<Radix; Di++) { /* 对于每个桶 */
         if (B[Di].head) { /* 将非空的桶整桶倒入A[], 递归排序 */
             p = B[Di].head;
             while (p) {
                 tmp = p;
                 p = p->next;
                 A[j++] = tmp->key;
                 free(tmp);
             }
             /* 递归对该桶数据排序, 位数减1 */
             MSD(A, i, j-1, D-1);
             i = j; /* 为下一个桶对应的A[]左端 */
         } 
     } 
}
 
void MSDRadixSort( ElementType A[], int N )
{ /* 统一接口 */
    MSD(A, 0, N-1, MaxDigit); 
}
           

11.3 散列查找

//创建开放定址法的散列表

#define MAXTABLESIZE 100000 /* 允许开辟的最大散列表长度 */
typedef int ElementType;    /* 关键词类型用整型 */
typedef int Index;          /* 散列地址类型 */
typedef Index Position;     /* 数据所在位置与散列地址是同一类型 */
/* 散列单元状态类型,分别对应:有合法元素、空单元、有已删除元素 */
typedef enum { Legitimate, Empty, Deleted } EntryType;
 
typedef struct HashEntry Cell; /* 散列表单元类型 */
struct HashEntry{
    ElementType Data; /* 存放元素 */
    EntryType Info;   /* 单元状态 */
};
 
typedef struct TblNode *HashTable; /* 散列表类型 */
struct TblNode {   /* 散列表结点定义 */
    int TableSize; /* 表的最大长度 */
    Cell *Cells;   /* 存放散列单元数据的数组 */
};
 
int NextPrime( int N )
{ /* 返回大于N且不超过MAXTABLESIZE的最小素数 */
    int i, p = (N%2)? N+2 : N+1; /*从大于N的下一个奇数开始 */
 
    while( p <= MAXTABLESIZE ) {
        for( i=(int)sqrt(p); i>2; i-- )
            if ( !(p%i) ) break; /* p不是素数 */
        if ( i==2 ) break; /* for正常结束,说明p是素数 */
        else  p += 2; /* 否则试探下一个奇数 */
    }
    return p;
}
 
HashTable CreateTable( int TableSize )
{
    HashTable H;
    int i;
 
    H = (HashTable)malloc(sizeof(struct TblNode));
    /* 保证散列表最大长度是素数 */
    H->TableSize = NextPrime(TableSize);
    /* 声明单元数组 */
    H->Cells = (Cell *)malloc(H->TableSize*sizeof(Cell));
    /* 初始化单元状态为“空单元” */
    for( i=0; i<H->TableSize; i++ )
        H->Cells[i].Info = Empty;
 
    return H;
}
           

//平方探测法的查找与插入

Position Find( HashTable H, ElementType Key )
{
    Position CurrentPos, NewPos;
    int CNum = 0; /* 记录冲突次数 */
 
    NewPos = CurrentPos = Hash( Key, H->TableSize ); /* 初始散列位置 */
    /* 当该位置的单元非空,并且不是要找的元素时,发生冲突 */
    while( H->Cells[NewPos].Info!=Empty && H->Cells[NewPos].Data!=Key ) {
                                           /* 字符串类型的关键词需要 strcmp 函数!! */
        /* 统计1次冲突,并判断奇偶次 */
        if( ++CNum%2 ){ /* 奇数次冲突 */
            NewPos = CurrentPos + (CNum+1)*(CNum+1)/4; /* 增量为+[(CNum+1)/2]^2 */
            if ( NewPos >= H->TableSize )
                NewPos = NewPos % H->TableSize; /* 调整为合法地址 */
        }
        else { /* 偶数次冲突 */
            NewPos = CurrentPos - CNum*CNum/4; /* 增量为-(CNum/2)^2 */
            while( NewPos < 0 )
                NewPos += H->TableSize; /* 调整为合法地址 */
        }
    }
    return NewPos; /* 此时NewPos或者是Key的位置,或者是一个空单元的位置(表示找不到)*/
}
 
bool Insert( HashTable H, ElementType Key )
{
    Position Pos = Find( H, Key ); /* 先检查Key是否已经存在 */
 
    if( H->Cells[Pos].Info != Legitimate ) { /* 如果这个单元没有被占,说明Key可以插入在此 */
        H->Cells[Pos].Info = Legitimate;
        H->Cells[Pos].Data = Key;
        /*字符串类型的关键词需要 strcpy 函数!! */
        return true;
    }
    else {
        printf("键值已存在");
        return false;
    }
}
           

//分离链接法的散列表实现

#define KEYLENGTH 15                   /* 关键词字符串的最大长度 */
typedef char ElementType[KEYLENGTH+1]; /* 关键词类型用字符串 */
typedef int Index;                     /* 散列地址类型 */
/******** 以下是单链表的定义 ********/
typedef struct LNode *PtrToLNode;
struct LNode {
    ElementType Data;
    PtrToLNode Next;
};
typedef PtrToLNode Position;
typedef PtrToLNode List;
/******** 以上是单链表的定义 ********/
 
typedef struct TblNode *HashTable; /* 散列表类型 */
struct TblNode {   /* 散列表结点定义 */
    int TableSize; /* 表的最大长度 */
    List Heads;    /* 指向链表头结点的数组 */
};
 
HashTable CreateTable( int TableSize )
{
    HashTable H;
    int i;
 
    H = (HashTable)malloc(sizeof(struct TblNode));
    /* 保证散列表最大长度是素数,具体见代码5.3 */
    H->TableSize = NextPrime(TableSize);
 
    /* 以下分配链表头结点数组 */
    H->Heads = (List)malloc(H->TableSize*sizeof(struct LNode));
    /* 初始化表头结点 */
    for( i=0; i<H->TableSize; i++ ) {
         H->Heads[i].Data[0] = '\0';
         H->Heads[i].Next = NULL;
    }
 
    return H;
}
 
Position Find( HashTable H, ElementType Key )
{
    Position P;
    Index Pos;
     
    Pos = Hash( Key, H->TableSize ); /* 初始散列位置 */
    P = H->Heads[Pos].Next; /* 从该链表的第1个结点开始 */
    /* 当未到表尾,并且Key未找到时 */ 
    while( P && strcmp(P->Data, Key) )
        P = P->Next;
 
    return P; /* 此时P或者指向找到的结点,或者为NULL */
}
 
bool Insert( HashTable H, ElementType Key )
{
    Position P, NewCell;
    Index Pos;
     
    P = Find( H, Key );
    if ( !P ) { /* 关键词未找到,可以插入 */
        NewCell = (Position)malloc(sizeof(struct LNode));
        strcpy(NewCell->Data, Key);
        Pos = Hash( Key, H->TableSize ); /* 初始散列位置 */
        /* 将NewCell插入为H->Heads[Pos]链表的第1个结点 */
        NewCell->Next = H->Heads[Pos].Next;
        H->Heads[Pos].Next = NewCell; 
        return true;
    }
    else { /* 关键词已存在 */
        printf("键值已存在");
        return false;
    }
}
 
void DestroyTable( HashTable H )
{
    int i;
    Position P, Tmp;
     
    /* 释放每个链表的结点 */
    for( i=0; i<H->TableSize; i++ ) {
        P = H->Heads[i].Next;
        while( P ) {
            Tmp = P->Next;
            free( P );
            P = Tmp;
        }
    }
    free( H->Heads ); /* 释放头结点数组 */
    free( H );        /* 释放散列表结点 */
}
           

12 KMP算法

#include <stdio.h>
#include <string.h> 
#include <stdlib.h>
 
typedef int Position;
#define NotFound -1
 
void BuildMatch( char *pattern, int *match )
{
    Position i, j;
    int m = strlen(pattern);
    match[0] = -1;
     
    for ( j=1; j<m; j++ ) {
        i = match[j-1];
        while ( (i>=0) && (pattern[i+1]!=pattern[j]) )
            i = match[i];
        if ( pattern[i+1]==pattern[j] )
             match[j] = i+1;
        else match[j] = -1;
    }
}
 
Position KMP( char *string, char *pattern )
{
    int n = strlen(string);
    int m = strlen(pattern);
    Position s, p, *match;
     
    if ( n < m ) return NotFound;
    match = (Position *)malloc(sizeof(Position) * m);
    BuildMatch(pattern, match);
    s = p = 0;
    while ( s<n && p<m ) {
        if ( string[s]==pattern[p] ) {
            s++; p++;
        }
        else if (p>0) p = match[p-1]+1;
        else s++;
    }
    return ( p==m )? (s-m) : NotFound;
}
 
int main()
{
    char string[] = "This is a simple example.";
    char pattern[] = "simple";
    Position p = KMP(string, pattern);
    if (p==NotFound) printf("Not Found.\n");
    else printf("%s\n", string+p);
    return 0;  
}
           

继续阅读