问题描述
假设我们有8种不同面值的硬币{1,2,5,10,20,50,100,200},用这些硬币组合够成一个给定的数值n。例如n=200,那么一种可能的组合方式为 200 = 3 * 1 + 1*2 + 1*5 + 2*20 + 1 * 50 + 1 * 100. 问总过有多少种可能的组合方式? (这道题目来自著名编程网站ProjectEuler, 点击这里查看原题目) 类似的题目还有:
[华为面试题] 1分2分5分的硬币三种,组合成1角,共有多少种组合
[创新工厂笔试题] 有1分,2分,5分,10分四种硬币,每种硬币数量无限,给定n分钱,有多少中组合可以组成n分钱
问题分析
给定一个数值sum,假设我们有m种不同类型的硬币{V1, V2, …, Vm},如果要组合成sum,那么我们有
sum = x1 * V1 + x2 * V2 + … + xm * Vm
求所有可能的组合数,就是求满足前面等值的系数{x1, x2, …, xm}的所有可能个数。
[思路1] 当然我们可以采用暴力枚举,各个系数可能的取值无非是x1 = {0, 1, …, sum / V1}, x2 = {0, 1, …, sum/ V2}等等。这对于硬币种类数较小的题目还是可以应付的,比如华为和创新工厂的题目,但是复杂度也很高O(sum/V1 * sum/V2 * sum/V3 * …)
[思路2] 从上面的分析中我们也可以这么考虑,我们希望用m种硬币构成sum,根据最后一个硬币Vm的系数的取值为无非有这么几种情况,xm分别取{0, 1, 2, …, sum/Vm},换句话说,上面分析中的等式和下面的几个等式的联合是等价的。
sum = x1 * V1 + x2 * V2 + … + 0 * Vm
sum = x1 * V1 + x2 * V2 + … + 1 * Vm
sum = x1 * V1 + x2 * V2 + … + 2 * Vm
…
sum = x1 * V1 + x2 * V2 + … + K * Vm
其中K是该xm能取的最大数值K = sum / Vm。可是这又有什么用呢?不要急,我们先进行如下变量的定义:
dp[i][sum] = 用前i种硬币构成sum 的所有组合数。
那么题目的问题实际上就是求dp[m][sum],即用前m种硬币(所有硬币)构成sum的所有组合数。在上面的联合等式中:当xn=0时,有多少种组合呢? 实际上就是前i-1种硬币组合sum,有dp[i-1][sum]种! xn = 1 时呢,有多少种组合? 实际上是用前i-1种硬币组合成(sum - Vm)的组合数,有dp[i-1][sum -Vm]种; xn =2呢, dp[i-1][sum - 2 * Vm]种,等等。所有的这些情况加起来就是我们的dp[i][sum]。所以:
dp[i][sum] = dp[i-1][sum - 0*Vm] + dp[i-1][sum - 1*Vm]
-
dp[i-1][sum - 2*Vm] + … + dp[i-1][sum - K*Vm]; 其中K = sum / Vm
换一种更抽象的数学描述就是:
递归公式
通过此公式,我们可以看到问题被一步步缩小,那么初始情况是什么呢?如果sum=0,那么无论有前多少种来组合0,只有一种可能,就是各个系数都等于0;
dp[i][0] = 1 // i = 0, 1, 2, … , m
如果我们用二位数组表示dp[i][sum], 我们发现第i行的值全部依赖与i-1行的值,所以我们可以逐行求解该数组。如果前0种硬币要组成sum,我们规定为dp[0][sum] = 0.
程序源码
/*
* Filename :coins.cpp
* Description: solve coin combinations using dynamic programing
* Complier: g++
* Author: python27
*/
#include <iostream>
#include <string>
#include <cmath>
#include <vector>
using namespace std;
/****************************************************************
* coin Combinations: using dynamic programming
*
* Basic idea:
* dp[i][j] = sum(dp[i-1][j-k*coins[i-1]]) for k = 1,2,..., j/coins[i-1]
* dp[0][j] = 1 for j = 0, 1, 2, ..., sum
*
* Input:
* coins[] - array store all values of the coins
* coinKinds - how many kinds of coins there are
* sum - the number you want to construct using coins
*
* Output:
* the number of combinations using coins construct sum
*
* Usage:
* c[3] = {1, 2, 5};
* int result = coinCombinations(c, 3, 10);
*
****************************************************************/
int coinCombinations(int coins[], int coinKinds, int sum)
{
// 2-D array using vector: is equal to: dp[coinKinds+1][sum+1] = {0};
vector<vector<int> > dp(coinKinds + , vector<int>(sum+,));
//init: dp[i][0] = 1; i = 0, 1, 2 ..., coinKinds
//Notice: dp[0][0] must be 1, althongh it make no sense that
//using 0 kinds of coins construct 0 has one way. but it the foundation
//of iteration. without it everything based on it goes wrong
for (int i = ; i <= coinKinds; ++i){
dp[i][] = ;
}
// iteration: dp[i][j] = sum(dp[i-1][j - k*coins[i-1]])
// k = 0, 1, 2, ... , j / coins[i-1]
for (int i = ; i <= coinKinds; ++i){
for (int j = ; j <= sum; ++j){
dp[i][j] = ;
for (int k = ; k <= j / coins[i-]; ++k){
dp[i][j] += dp[i-][j - k * coins[i-]];
}
}
}
return dp[coinKinds][sum];
}
int main()
{
int coins[] = {, , , , , , , };
int sum = ;
int result = coinCombinations(coins, , );
cout << "using 8 kinds of coins construct 200, combinations are: " << endl;
cout << result << endl;
return ;
}
聪明的读者或许已经发现,在算法的描述中说明用动态规划的方法来求解此问题,什么?动态规划,我们什么时候用动态规划了?哈哈,在我们写出递归公式并且给出初始解的时候,我们就已经在用动态规划了。
动态规划的基本思想就是将待求解问题分解为若干子问题,(如本题中我们将dp[i][j]分解为若干dp[i-1][j-x]的问题),先求解这些子问题并将结果保存起来( 我们用dp[][]二维数组保存子结果),若在求解较大的问题时用到较小子问题的结果,可以直接取用(求dp[i][j]时用dp[i-1][x]的结果),从而免去重复计算。动态规划是一种非常强大的算法思想,无论做过多少动态规划的题目,下一次依然会被动态规划的强大所震撼。随后的博客中,我们会更多的接触动态规划。你可以在后面的参考文献中找到更多有用的资源。
参考文献
[1] ProjectEuler: http://projecteuler.net/problem=31
[2] Topcoder Algorithm tutorial: http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg
[3] Sanjoy Dasgupta. 算法概论. 清华大学出版社,2008: 173 - 193.
[4] Thomas H. Cormen, et al. 算法导论. 机械工业出版社,2011: 192 - 212.
转载:http://www.cnblogs.com/python27/p/3303721.html