天天看点

使用 lasio 处理 .las 文件

使用 lasio 处理 .las 文件

文章目录

  • ​​使用 lasio 处理 .las 文件​​
  • ​​1. 简述​​
  • ​​2. lasio 的安装​​
  • ​​3. lasio的使用​​
  • ​​3.1. 显示 lasio 的版本​​
  • ​​3.2. 显示曲线名​​
  • ​​3.3. 输出参数​​
  • ​​3.4. 输出数据​​
  • ​​3.5 lasio转为csv​​
  • ​​3.6. lasio 转为xlsx​​

1. 简述

对于地球物理,地质,岩石物理日志,钻孔数据是不可避免的一个问题。.las 文件的数据格式比较奇特,如果将其看成 .txt 的数据,在使用 python 的 numpy, pandas 模块进行处理的时候就比较繁琐。所幸,python 的 lasio 模块能够解决这个问题。

使用 lasio 处理 .las 文件

lasio 模块的官网链接如下:​​https://lasio.readthedocs.io/en/latest/​​

lasio 支持的python版本是3.6+

2. lasio 的安装

lasio 推荐使用 pip 进行安装

在此之前要确认已经安装好了 numpy

如果安装速度比较慢,可能是 pip 镜像源的问题,可以设置镜像为清华镜像

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple      

安装numpy

pip install numpy      

numpy 安装好之后再安装 lasio

pip install lasio      

lasio 安装完成后显示:

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting lasio
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/82/0e/9613fcc757533d613fe969370fb054c0e81293b39d2eb1be25e4b4c1a85a/lasio-0.30-py2.py3-none-any.whl (43 kB)
     |████████████████████████████████| 43 kB 3.2 MB/s
Requirement already satisfied: numpy in c:\software\anaconda3\envs\pytorch1.11.0_py3.8\lib\site-packages (from lasio) (1.22.3)      

3. lasio的使用

首先引用 lasio

import      

lasio 还有一个样例库可以来帮助使用者来熟悉 lasio

import lasio.examples
las = lasio.examples.open("1001178549.las")      

3.1. 显示 lasio 的版本

las.version      
# 输出
[HeaderItem(mnemonic="VERS", unit="", value="2.0", descr="CWLS Log ASCII Standa"),
 HeaderItem(mnemonic="WRAP", unit="", value="YES", descr="Multiple lines per de")]      

3.2. 显示曲线名

print(las.curves)      
# 输出
Mnemonic  Unit    Value         Description                                   
--------  ----    -----         -----------                                   
DEPT      FT      0   1  0  0   1 DEPTH                                       
GSGR      API     31 310  0  0  2 GAMMA RAY                                   
GSTK      API     31 797  0  0  3 ????????                                    
GST       API     99 999 99  0  4 ????????                                    
GSK       PERCNT  31 721  1  0  5 ????????                                    
GSTH      PPM     31 790  0  0  6 THORIUM                                     
GSUR      PPM     31 792  0  0  7 URANIUM                                     
NCNPL     PERCNT  42 890  1  0  8 NEUTRON POROSITY (LIMESTONE)                
DLDPL     PERCNT  43 890 10  0  9 DENSITY POROSITY (LIMESTONE)                
DLDC      GM/CC   43 356  0  0  10 DENSITY CORRECTION                         
DLPE      B/E     43 358  0  0  11 PHOTO-ELECTRIC EFFECT                      
DLDN      GM/CC   43 350  0  0  12 BULK DENSITY                               
DLCL      INCHES  43 280  0  0  13 CALIPER                                    
DLTN      LBS     43 635  0  0  14 ????????                                   
IDGR      API     7 310  0  0   15 GAMMA RAY                                  
ACCL1     INCHES  60 280  1  0  16 DENSITY CALIPER                            
ACCL2     INCHES  60 280  2  0  17 NEUTRON CALIPER                            
ACTC      US/FT   60 520  0  0  18 SONIC INTERVAL TRANSIT TIME (COMPENSATED)  
ACAPL     PERCNT  60 890 20  0  19 POROSITY                                   
IDIM      OHMM    7 120 44  0   20 MEDIUM INDUCTION                           
IDID      OHMM    7 120 46  0   21 DEEP INDUCTION                             
IDIDC     MMHOS   7 110 46  0   22 INDUCTION (CONDUCTIVITY UNITS)             
IDL3      OHMM    7 220  3  0   23 FOCUSSED RESISTIVITY                       
IDTN      LBS     7 635  0  0   24 ????????                                   
IDSP      MVOLT   7  10  0  0   25 SPONTANEOUS POTENTIAL                      
MEL1      OHMM    15 250  2  0  26 MICRO INVERSE 1"                           
ME        OHMM    15 252  2  0  27 MICRO NORMAL 2"      

3.3. 输出参数

las.params      
# 输出
[HeaderItem(mnemonic="RUN", unit="", value="99", descr="Run Number"),
 HeaderItem(mnemonic="GL", unit="FT", value="3190.0", descr="Ground Level Eleva"),
 HeaderItem(mnemonic="DREF", unit="", value="KB", descr="Depth Reference"),
 HeaderItem(mnemonic="EREF", unit="FT", value="3210.0", descr="Elevation of Dep"),
 HeaderItem(mnemonic="CSGL", unit="FT", value="1791.0", descr="Casing Bottom Lo"),
 HeaderItem(mnemonic="CSGD", unit="FT", value="0.0", descr="Casing Bottom Drill"),
 HeaderItem(mnemonic="CSGS", unit="IN", value="8.625", descr="Casing Size"),
 HeaderItem(mnemonic="CSGW", unit="LBS", value="0.0", descr="Casing Weight"),
 HeaderItem(mnemonic="BHT", unit="DEGF", value="125.0", descr="Bottom Hole Temp"),
 HeaderItem(mnemonic="BS", unit="IN", value="7.875", descr="Bit Size"),
 HeaderItem(mnemonic="RM", unit="OHMM", value="2.11", descr="Mud Resistivity"),
 HeaderItem(mnemonic="RMT", unit="DEGF", value="80.0", descr="Mud Resistivity T"),
 HeaderItem(mnemonic="RMF", unit="OHMM", value="1.58", descr="Mud Filtrate Resi"),
 HeaderItem(mnemonic="RMFT", unit="DEGF", value="80.0", descr="RMF Temperature"),
 HeaderItem(mnemonic="RMC", unit="OHMM", value="2.74", descr="Mud Cake Resistiv"),
 HeaderItem(mnemonic="RMCT", unit="DEGF", value="80.0", descr="RMC Temperature"),
 HeaderItem(mnemonic="LAT", unit="", value="37.41565", descr="Latitude"),
 HeaderItem(mnemonic="LONG", unit="", value="-101.58701", descr="Longitude")]      

3.4. 输出数据

las.data      
# 输出
array([[1.7835000e+03,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan, 5.0646500e+01, 8.3871000e+00,
        8.4396000e+00, 5.5100000e+01, 5.6900000e-02, 5.6000000e+02,
        1.7500000e+02, 5.0000000e-02, 4.5330000e-01, 1.8930420e+03,
        9.2605000e+01,           nan,           nan],
       [1.7837500e+03,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan, 4.9676700e+01, 8.3951000e+00,
        8.4460000e+00, 5.4355500e+01, 5.9000000e-02, 5.6000000e+02,
        1.7500000e+02, 5.0000000e-02, 4.5340000e-01, 1.8523320e+03,
        9.2778000e+01,           nan,           nan],
       [1.7840000e+03,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan, 4.8631300e+01, 8.4052000e+00,
        8.4460000e+00, 5.4444400e+01, 5.8100000e-02, 5.6000000e+02,
        1.7500000e+02, 5.0000000e-02, 4.5370000e-01, 1.8319766e+03,
        9.2948200e+01,           nan,           nan],
       [1.7842500e+03,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan, 4.7771700e+01, 8.4173000e+00,
        8.4438000e+00, 5.5311100e+01, 5.7700000e-02, 5.6000000e+02,
        1.7500000e+02, 5.0000000e-02, 4.5380000e-01, 1.8319766e+03,
        9.3110300e+01,           nan,           nan],
       [1.7845000e+03,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan,           nan,           nan,
                  nan,           nan, 4.8114900e+01, 8.4253000e+00,
        8.4460000e+00, 5.6322200e+01, 5.8500000e-02, 5.6000000e+02,
        1.7500000e+02, 5.0000000e-02, 4.5390000e-01, 1.8116211e+03,
        9.3267100e+01,           nan,           nan]])      

3.5 lasio转为csv

>>> import lasio.examples
>>> from sys import stdout
>>> las = lasio.examples.open('sample.las')
>>> las.to_csv(stdout)
DEPT,DT,RHOB,NPHI,SFLU,SFLA,ILM,ILD
M,US/M,K/M3,V/V,OHMM,OHMM,OHMM,OHMM
1670.0,123.45,2550.0,0.45,123.45,123.45,110.2,105.6
1669.875,123.45,2550.0,0.45,123.45,123.45,110.2,105.6
1669.75,123.45,2550.0,0.45,123.45,123.45,110.2,105.6      

3.6. lasio 转为xlsx

pip install      
las.to_excel('sample.xlsx')