协程通过 async/await 语法进行声明,是编写异步应用的推荐方式
例如新定义一个协程(coroutine object):
async def foo():
return 42
首先先来介绍下:
认识aysn和asyncio都有哪些函数方法:
创建一个future 对象:
task = asyncio.create_task(foo())
或者使用
task=asyncio.ensure_future(foo())
那么如何判断创建的task到底是不是future 对象呢?
async def exetask():
# task = asyncio.create_task(foo())
task = asyncio.ensure_future(foo())
if isinstance(task,asyncio.Future):
print("yes")
else:
print("no")
s=await task
asyncio.run(exetask())
结果如下:
yes
答案是肯定的。
2.如何运行一个协程:
要真正运行一个协程,asyncio 提供了三种主要机制:
第一种:
- asyncio.run() 函数用来运行最高层级的入口点 "main()" 函数 (参见上面的示例。)
第二种:
通过loop对象实现:
loop=asyncio.get_event_loop()
async def jobs():
i=10
while i>0:
# time.sleep(0.5)
i=i-1
return 0
tasks=[asyncio.ensure_future(jobs(k)) for k in range(1,4)]
res=loop.run_until_complete(asyncio.gather(*tasks))
print(res)
loop.close()
3.并发
第1种并发运行:
当一个协程通过 asyncio.create_task() 等函数被打包为一个 任务,asyncio.create_task(coro)将 coro 协程 打包为一个 Task 排入日程准备执行,
返回 Task 对象。此函数 在 Python 3.7 中被加入。在 Python 3.7 之前,of course你也可以改用低层级的 asyncio.ensure_future() 函数, This works in all Python versions but is less readable
#### ordinal job async
async def jobs():
i=10
while i>0:
# time.sleep(0.5)
i=i-1
return 0
async def get_status():
r=await jobs()
return r
loop=event=asyncio.get_event_loop()
tasks = [asyncio.create_task(get_status()) for k in range(1,4)]
for task in tasks:
r=loop.run_until_complete(asyncio.wait_for(task,timeout=10))
print(r)
这里我采用了比较低级的loop事件对象来调用run_until_complete() 方法来实现:
事实上开发者一般更喜欢采用高级用法asyncio.wait()或者asyncio.wait_for()来实现这写异步任务调用:
在进行下面介绍之前我想你应该先了解:
asyncio.
wait_for
(aw, timeout, *, loop=None)
等待 aw 可等待对象 完成,指定 timeout 秒数后超时。
如果 aw 是一个协程,它将自动作为任务加入日程。
timeout 可以为
None
,也可以为 float 或 int 型数值表示的等待秒数。如果 timeout 为
None
,则等待直到完成。
如果发生超时,任务将取消并引发 asyncio.TimeoutError.
要避免任务 取消,可以加上 shield()。
函数将等待直到目标对象确实被取消,所以总等待时间可能超过 timeout 指定的秒数。
如果等待被取消,则 aw 指定的对象也会被取消。
loop 参数已弃用,计划在 Python 3.10 中移除。
asyncio.
wait
(aws, *, loop=None, timeout=None, return_when=ALL_COMPLETED)
并发运行 aws 指定的 可等待对象 并阻塞线程直到满足 return_when 指定的条件。
如果 aws 中的某个可等待对象为协程,它将自动作为任务加入日程。直接向
wait()
传入协程对象已弃用,因为这会导致 令人迷惑的行为。
返回两个 Task/Future 集合:
(done, pending)
。
用法:
done, pending = await asyncio.wait(aws)
loop 参数已弃用,计划在 Python 3.10 中移除。
如指定 timeout (float 或 int 类型) 则它将被用于控制返回之前等待的最长秒数。
请注意此函数不会引发 asyncio.TimeoutError。当超时发生时,未完成的 Future 或 Task 将在指定秒数后被返回。
return_when 指定此函数应在何时返回。它必须为以下常数之一:
常数 | 描述 |
| 函数将在任意可等待对象结束或取消时返回。 |
| 函数将在任意可等待对象因引发异常而结束时返回。当没有引发任何异常时它就相当于 。 |
| 函数将在所有可等待对象结束或取消时返回。 |
与 wait_for() 不同,
wait()
在超时发生时不会取消可等待对象。
如何验证wait 不取消,wait_for 取消aw对象呢:
我们来看个例子:
先看wait_for:
async def foo(k=0):
await asyncio.sleep(30)
return k
async def exetask():
task=asyncio.create_task(foo(k=1))
try:
await asyncio.wait_for(task,timeout=1)
print(task.cancelled())
#3.7 改为当 aw 因超时被取消,wait_for 会等待 aw 被取消,3.7之前直接报异常,
except asyncio.TimeoutError:
print("timeout ")
# task.cancel()
print(task.cancelled())
asyncio.run(exetask())
结果:
C:\Python37\python.exe D:/workspace/AutoFate/src/commonutils/asyncutils.py
timeout
True
再看wait,这里注意由于waitexpect a list of futures, not Task,我换种写法:
async def foo(k=0):
await asyncio.sleep(30)
return k
async def exetask():
task = asyncio.create_task(foo(k=1))
try:
#请注意wait函数不会引发 asyncio.TimeoutError
await asyncio.wait([task], timeout=1)
## 3.7 改为当 aw 因超时被取消,wait_for 会等待 aw 被取消,3.7之前直接报异常,
# await asyncio.wait_for(task,timeout=1)
except asyncio.TimeoutError:
print("timeout ")
print(task.cancelled())
asyncio.run(exetask())
结果:
C:\Python37\python.exe D:/workspace/AutoFate/src/commonutils/asyncutils.py
False
Process finished with exit code 0
这里完美的展现了阻塞的魅力!!!!!!!
第2种并发运行:
awaitable asyncio.gather(*aws, loop=None, return_exceptions=False)
并发 运行 aws 序列中的 可等待对象。
下面来看个简单的例子:
async def count(k):
print(f"start job{k} {time.asctime()} ")
await asyncio.sleep(0.6)
print(f"end job{k} {time.asctime()}")
return k
async def mayns():
r=await asyncio.gather(count(1),count(2))
return r
def test():
import time
st=time.perf_counter()
results=asyncio.run(mayns())
elapsed=time.perf_counter()-st
print(f"result return :{results} execute in {elapsed:0.2} seconds.")
运行结果:
start job1 Fri Dec 13 23:00:38 2019
start job2 Fri Dec 13 23:00:38 2019
end job1 Fri Dec 13 23:00:39 2019
end job2 Fri Dec 13 23:00:39 2019
result return :[1, 2] execute in 0.6 seconds.
gather直接返回的是调用的task的所有result列表
当然你也可以这样搜集任务:
最后介绍一下如何实现异步http请求:
# request 库同步阻塞,aiohttp才是异步的请求,pip install aiohttp
from aiohttp import ClientSession as session
async def test2(k):
r=await other_test(k)
return r
async def other_test(k):
print("start await job %s,%s"%(k,time.asctime()))
urls = ["http://127.0.0.1:8000/index", "http://127.0.0.1:8000/stuTable/"]
async with session() as request:
async with request.get(urls[0]) as rq:
r=await rq.read()
res=r.decode("utf-8")
print("end await job %s,%s"%(k,time.asctime()))
return res
def test_aiohttp():
klist=[100,50,88]
loop=asyncio.get_event_loop()
tasks=[asyncio.ensure_future(test2(k)) for k in klist]
# loop.run_until_complete(asyncio.wait(tasks))
#可通过asyncio.gather(*tasks)将响应全部收集起来
res=loop.run_until_complete(asyncio.gather(*tasks))
print(res)
loop.close()
结果:
C:\Python37\python.exe D:/workspace/AutoFate/src/commonutils/asyncutils.py
start await job 100,Fri Dec 13 23:54:31 2019
start await job 50,Fri Dec 13 23:54:31 2019
start await job 88,Fri Dec 13 23:54:31 2019
end await job 88,Fri Dec 13 23:54:31 2019
end await job 50,Fri Dec 13 23:54:31 2019
end await job 100,Fri Dec 13 23:54:31 2019
['{"user": "test001", "msg": "this is test index view "}', '{"user": "test001", "msg": "this is test index view "}', '{"user": "test001", "msg": "this is test index view "}']
Process finished with exit code 0
服务是自己用djangO起的:
from django.shortcuts import render
# Create your views here.
from django.http import HttpResponse
import json
from . models import Student,Grade
from django.db import models
def index(request):
data={"user":"test001","msg":"this is test index view "}
js=json.dumps(data)
return HttpResponse(js)
def stuTable(request):
import time
time.sleep(3)
# stu_object=Student.objects.all()
# return render(request,template_name="index.html",context={"student_object":stu_object})
return HttpResponse(json.dumps({"A":888,"NN":899}))