天天看点

Autograph的使用规范

有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph。

TensorFlow 2.0主要使用的是动态计算图和Autograph。

动态计算图易于调试,编码效率较高,但执行效率偏低。

静态计算图执行效率很高,但较难调试。

而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。

当然Autograph机制能够转换的代码并不是没有任何约束的,有一些编码规范需要遵循,否则可能会转换失败或者不符合预期。

我们将着重介绍Autograph的编码规范和Autograph转换成静态图的原理。

并介绍使用tf.Module来更好地构建Autograph。

本篇我们介绍使用Autograph的编码规范。

一,Autograph编码规范概述

1,被@tf.function修饰的函数应尽可能使用TensorFlow中的函数而不是Python中的其他函数。例如使用tf.print而不是print,使用tf.range而不是range,使用tf.constant(True)而不是True.

2,避免在@tf.function修饰的函数内部定义tf.Variable.

3,被@tf.function修饰的函数不可修改该函数外部的Python列表或字典等数据结构变量。

二,Autograph编码规范说明

1,被@tf.function修饰的函数应尽量使用TensorFlow中的函数而不是Python中的其他函数。

import numpy as np
import tensorflow as tf

@tf.function
def np_random():
    a = np.random.randn(3,3)
    tf.print(a)

@tf.function
def tf_random():
    a = tf.random.normal((3,3))
    tf.print(a)
           

复制

Autograph的使用规范
Autograph的使用规范

2,避免在@tf.function修饰的函数内部定义tf.Variable.

# 避免在@tf.function修饰的函数内部定义tf.Variable.

x = tf.Variable(1.0,dtype=tf.float32)
@tf.function
def outer_var():
    x.assign_add(1.0)
    tf.print(x)
    return(x)

outer_var() 
outer_var()
           

复制

Autograph的使用规范
@tf.function
def inner_var():
    x = tf.Variable(1.0,dtype = tf.float32)
    x.assign_add(1.0)
    tf.print(x)
    return(x)

#执行将报错
#inner_var()
#inner_var()

           

复制

Autograph的使用规范

3,被@tf.function修饰的函数不可修改该函数外部的Python列表或字典等结构类型变量

tensor_list = []

#@tf.function #加上这一行切换成Autograph结果将不符合预期!!!
def append_tensor(x):
    tensor_list.append(x)
    return tensor_list

append_tensor(tf.constant(5.0))
append_tensor(tf.constant(6.0))
print(tensor_list)
           

复制

Autograph的使用规范
tensor_list = []

@tf.function #加上这一行切换成Autograph结果将不符合预期!!!
def append_tensor(x):
    tensor_list.append(x)
    return tensor_list


append_tensor(tf.constant(5.0))
append_tensor(tf.constant(6.0))
print(tensor_list)
           

复制

Autograph的使用规范