天天看点

Java - ReentrantLock实现细节

话不多说,下面通过流程图及源码介绍ReentrantLock的实现细节。

先看下逻辑流程图,总体统揽:

Java - ReentrantLock实现细节
1. ReentrantLock的实现依赖于AQS-AbstractQueuedSynchronizer

ReentrantLock中有两种锁实现,分别是公平锁

fairSync

和非公平锁

NonfairSync

,他们都继承Sync,而 Sync又继承自AbstractQueuedSynchronizer 。

重点关注重写的

tryAcquire

tryRelease

方法,他俩分别是加锁和释放锁的重要逻辑。

abstract static class Sync extends AbstractQueuedSynchronizer {
    private static final long serialVersionUID = -5179523762034025860L;

    /**
     * Performs {@link Lock#lock}. The main reason for subclassing
     * is to allow fast path for nonfair version.
     */
    abstract void lock();

    /**
     * Performs non-fair tryLock.  tryAcquire is implemented in
     * subclasses, but both need nonfair try for trylock method.
     */
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }

    protected final boolean tryRelease(int releases) {
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }

    protected final boolean isHeldExclusively() {
        // While we must in general read state before owner,
        // we don't need to do so to check if current thread is owner
        return getExclusiveOwnerThread() == Thread.currentThread();
    }

    final ConditionObject newCondition() {
        return new ConditionObject();
    }

    ...
}           

复制

2. AQS的模板模式

acquire方法作为模板方法,包含了未实现方法

tryAcquire

,相当于抽象类。(这里没有实现成抽象类的原因是AQS还可以提供共享锁的实现框架,而tryAcquire属于独占锁依赖的方法,实现共享锁没必要实现独占锁的抽象方法)

public final void acquire(int arg) {
    if (!tryAcquire(arg) && // 尝试获取锁
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) // 获取失败则进入等待队列
        selfInterrupt();
}           

复制

protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }           

复制

3. 以公平锁来看获取锁逻辑

主要有三个关注点:

  • lock(加锁)调用模板方法acquire
  • tryAcquire(尝试获取锁 成功-true 失败-false)如果当前没有线程持有锁(有可能等待队列中有线程等待,但是锁刚释放,队首线程还未争抢)则CAS争抢锁,争抢成功设置当前线程为锁持有线程。
  • tryAcquire如果有线程持有锁,判断是否是当前线程持有的,如果是则变成重入锁state+1,否则返回false获取失败。
static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;

    final void lock() {
        acquire(1);// 加锁,直接调用AQS的模板方法acquire
    }

    /**
     * Fair version of tryAcquire.  Don't grant access unless
     * recursive call or no waiters or is first.
     */
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) { // 没有线程持有锁
            if (!hasQueuedPredecessors() && // 等待队列中没有等待线程
                compareAndSetState(0, acquires)) { // CAS争抢锁
                setExclusiveOwnerThread(current); // 争抢成功之后将锁持有线程变成当前持有线程
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) { // 重入锁的关键,判断持有锁的线程是否是当前线程
            int nextc = c + acquires;
            if (nextc < 0) // 溢出
                throw new Error("Maximum lock count exceeded");
            setState(nextc); // 重入锁+1
            return true;
        }
        return false;
    }
}           

复制

4. 尝试获取锁失败进入等待队列
  • 将新进线程节点放置队尾
private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node); // 如果等待队列为空,初始化等待队列并将新进线程节点放置队尾
    return node;
}           

复制

  • 如果等待队列为空,初始化等待队列并将新进线程节点放置队尾
private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) { // 将新进线程节点放置队尾
                t.next = node;
                return t;
            }
        }
    }
}           

复制

  • 将排队线程挂起,形成阻塞态,释放cpu,等待唤醒
final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt()) // 对当前线程进行LockSupport.park(this)操作挂起线程,形成阻塞态,释放cpu
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}           

复制

  • 对当前线程进行LockSupport.park(this)操作挂起线程,形成阻塞态,释放cpu,排队等待获取锁,获取锁时通过LockSupport.unpark唤醒线程。
private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
}           

复制

5. unlock释放锁
  • 调用AQS的release方法
public void unlock() {
    sync.release(1); // AQS的release模板方法
}           

复制

  • release也是一个模板方法,最后调用unparkSuccessor唤醒线程
public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h); // 唤醒线程
        return true;
    }
    return false;
}           

复制

  • 调用LockSupport.unpark唤醒等待线程
private void unparkSuccessor(Node node) {
    /*
     * If status is negative (i.e., possibly needing signal) try
     * to clear in anticipation of signalling.  It is OK if this
     * fails or if status is changed by waiting thread.
     */
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);

    /*
     * Thread to unpark is held in successor, which is normally
     * just the next node.  But if cancelled or apparently null,
     * traverse backwards from tail to find the actual
     * non-cancelled successor.
     */
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
        LockSupport.unpark(s.thread); // 唤醒等待线程
}           

复制