天天看点

【对话生成】常见对话生成数据集整理,含下载链接(更新至2021.09.02)前言用于对话理解的对话数据集常规开放域对话数据集情感对话数据集个性对话数据集策略控制对话生成

【对话生成】常见对话生成数据集整理,含下载链接(持续更新)

  • 前言
  • 用于对话理解的对话数据集
    • IEMOCAP
    • SEMAINE
    • Mastodon
    • MELD
    • EMOTyDA
    • MEmoR
  • 常规开放域对话数据集
    • OpenSubtitles
    • Cornell Movie-Dialogs
    • STC
    • Ubuntu Dialogue Corpus
    • Douban Conversation Corpus
    • LCCC
    • OpenViDial
    • PchatbotW
    • WDC-Dialogue
    • 待更新
  • 情感对话数据集
    • DailyDialog
    • ESTC
    • EMPATHETICDIALOGUES
    • ESConv
    • 待更新
  • 个性对话数据集
    • PERSONA-CHAT
    • PersonalDialog
    • 待更新
  • 策略控制对话生成
    • PsyQA
    • 待更新

前言

本文主要整理对话生成领域相关的数据集,尤其是开放域对话生成。当前可以把开放域对话生成任务划分为:传统开放域对话生成、多模态对话生成、情感对话生成、个性化对话生成、策略控制对话生成等。笔者的划分是根据自己对该任务研究进展梳理而得到的理解,并不一定合理。

用于对话理解的对话数据集

IEMOCAP

发布时间:2008年

论文链接:https://link.springer.com/article/10.1007/s10579-008-9076-6

数据集链接:https://sail.usc.edu/iemocap/

数据集语言:英文

数据集模态:视频、音频、文本

数据集描述:IEMOCAP主要用于对话情感识别,包含151个对话、7433个语句、10个对话角色、10种情感标签。

SEMAINE

发布时间:2012年

论文链接:https://ieeexplore.ieee.org/document/5959155

数据集链接:https://semaine-db.eu/

数据集语言:英文

数据集模态:视频、音频、文本

数据集描述:SEMAINE主要用于对话情感识别,由四个固定形象的机器人与人进行对话,标注了4个情感维度:Valence (愉悦度), Arousal (激活度), Expectancy (预期), Power (力量)。Valence表示情感积极的程度,Arousal表示兴奋的程度,Expectancy表示与预期相符的程度,Power表示情感影响力。其中Valence、Arousa和Expectancy为[-1, 1]范围内的连续值,Power为大于等于0的连续值。

Mastodon

发布时间:2018年

论文链接:https://www.aclweb.org/anthology/C18-1063/

数据集链接:https://github.com/cerisara/DialogSentimentMastodon

数据集语言:英文

数据集模态:文本

数据集描述:Mastodon主要用于对话当中的情感与对话动作(DA)识别,尤其是联合识别任务。它包括535个对话、2217个语句,标注了3大类情感标签、27类对话动作(DA)。

MELD

发布时间:2019年

论文链接:https://www.aclweb.org/anthology/P19-1050

数据集链接:https://affective-meld.github.io/

数据集语言:英文

数据集模态:视频、音频、文本

数据集描述:MELD主要用于对话中的情感识别,也有部分论文将其用于情感对话生成或者多模态对话生成。它包括1433个对话、13708个语句,提供了3大类粗粒度情感标签以及7种细粒度情感标签。视频被切割成按语句划分的短视频,可以通过语句索引获得该语句对应的视频。

EMOTyDA

发布时间:2020年

论文链接:https://www.aclweb.org/anthology/2020.acl-main.402/

数据集链接:https://github.com/sahatulika15/EMOTyDA

数据集语言:英文

数据集模态:视频、音频、文本

数据集描述:EMOTyDA是一个类似于Mastodon的对话数据集,它主要整理了IEMOCAP以及MELD数据集,并且增加了12种常见的对话动作标签,最终包括了1341个对话以及19365个对话语句。可以用于情感和DA的联合识别任务。

MEmoR

发布时间:2020年

论文链接:https://dl.acm.org/doi/10.1145/3394171.3413909

数据集链接:https://github.com/sunlightsgy/MEmoR

数据集语言:英文

数据集模态:视频、音频、文本

数据集描述:MEmoR数据集主要用于多模态情感推理(ER),包括8536个对话以及22732个语句,提供了14种情感标签并且对64个说话人标注了16PF、Big Five、MBTI三种个性特质用于辅助情感推理。我认为该数据集还可以用于情感对话或者个性化对话任务。

常规开放域对话数据集

OpenSubtitles

发布时间:2009年

论文链接:http://www.lrec-conf.org/proceedings/lrec2016/pdf/947_Paper.pdf

数据集链接:http://nlp.stanford.edu/data/OpenSubData.tar

数据集链接2:https://opus.nlpl.eu/OpenSubtitles-v2018.php

数据集语言:多语言(62种语言)

数据集模态:文本

数据集描述:OpenSubtitles主要用于开放域对话生成,包含2.6 billion语句。

Cornell Movie-Dialogs

发布时间:2011年

论文链接:https://www.aclweb.org/anthology/W11-0609/

数据集链接:http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

数据集语言:英文

数据集模态:文本

数据集描述:Cornell Movie-Dialogs包含从原始电影脚本中提取的大量元数据丰富的虚构对话集合,10,292 对电影角色之间的 220,579 次对话交流, 涉及 617 部电影中的 9,035 个角色,总共 304,713 条话语。

STC

发布时间:2015年

论文链接:https://www.aclweb.org/anthology/P15-1152/

数据集链接:https://coai-dataset.oss-cn-beijing.aliyuncs.com/STC-corpus.zip

数据集语言:中文

数据集模态:文本

数据集描述:STC是从微博爬取的语料构造的短文本对话(Short-Text Conversation)数据集,包含4.4 million个对话,。这里的数据集下载链接来自项目CDial-GPT。

Ubuntu Dialogue Corpus

发布时间:2015年

论文链接:https://www.aclweb.org/anthology/W15-4640/

数据集链接:https://github.com/rkadlec/ubuntu-ranking-dataset-creator

数据集语言:英文

数据集模态:文本

数据集描述:该数据集包含930,000个对话,7,100,000个语句,平均对话轮次为7.71轮,常用于开放域对话生成。

Douban Conversation Corpus

发布时间:2017年

论文链接:https://www.aclweb.org/anthology/P17-1046/

数据集链接:https://github.com/MarkWuNLP/

数据集语言:中文

数据集模态:文本

数据集描述:Douban数据集主要爬取自中文豆瓣论坛,包含1.1M个对话,7.7M个语句。

LCCC

发布时间:2020年

论文链接:https://arxiv.org/abs/2008.03946

数据集链接:https://github.com/thu-coai/CDial-GPT

数据集语言:中文

数据集模态:文本

数据集描述:LCCC数据集分为base和large两个版本,主要用于预训练大规模对话生成模型,其base版本包括了12M个对话,32.9M个对话语句。

OpenViDial

发布时间:2020年

论文链接:https://arxiv.org/abs/2012.15015

数据集链接:https://github.com/ShannonAI/OpenViDial

数据集语言:英文

数据集模态:图像、文本

数据集描述:OpenViDial 中的数据来自电影与电视剧,使用 OCR 从视频中抽取出对话文本,并配以当前对话所在的图像,因此,每一句话都有相应视觉背景,最终形成包含百万余条句子的大规模多模态对话数据集。其包含了1.1M个对话语句+视觉背景。

PchatbotW

发布时间:2021年

论文链接:https://arxiv.org/abs/2009.13284

数据集链接:https://github.com/qhjqhj00/Pchatbot

数据集语言:中文

数据集模态:文本

数据集描述:PchatbotW主要从微博爬取得到,包括了139,448,339个对话、 278,896,678,并且提供了时间戳和用户ID两种个性信息,可以隐式地建模说话者的个性。

WDC-Dialogue

发布时间:2021年

论文链接:https://arxiv.org/pdf/2108.01547.pdf

数据集链接:https://github.com/thu-coai/EVA

数据集语言:中文

数据集模态:文本

数据集描述:这是一个超大规模的中文对话数据集,其平均轮次为2.1,所以我认为其是单轮对话数据集比较妥当。该数据集包括了1.4B个对话,以及3.0B个语句,其规模可以说是前所未有的大!

待更新

发布时间:

论文链接:

数据集链接:

数据集语言:

数据集模态:

数据集描述:

情感对话数据集

DailyDialog

发布时间:2017年

论文链接:https://www.aclweb.org/anthology/I17-1099/

数据集链接:http://yanran.li/dailydialog

数据集语言:英文

数据集模态:文本

数据集描述:DailyDialog主要包括13118个对话、102K个对话语句,标注了7种情感、4类对话动作(DA)以及10个对话主题。可以用于对话情感识别、对话动作识别任务,以及情感对话生成任务。

ESTC

发布时间:2018年

论文链接:https://arxiv.org/abs/1704.01074

数据集链接:http://coai.cs.tsinghua.edu.cn/hml/challenge2017/

数据集语言:中文

数据集模态:文本

数据集描述:ESTC数据集是在STC数据集的基础上,使用一个训练好的文本情感分类器得到,通过文本情感分类器,自动标注了6类情感标签,常用于中文情感对话生成任务。

EMPATHETICDIALOGUES

发布时间:2019年

论文链接:https://www.aclweb.org/anthology/P19-1534/

数据集链接:https://github.com/facebookresearch/EmpatheticDialogues

数据集语言:英文

数据集模态:文本

数据集描述:EMPATHETICDIALOGUES主要用于共情对话生成,由25000个对话组成,提供了32种情感标签。

ESConv

发布时间:2021年

论文链接:https://arxiv.org/abs/2106.01144

数据集链接:https://github.com/thu-coai/Emotional-Support-Conversation

数据集语言:英文

数据集模态:文本

数据集描述:ESConv包括了1053个对话、31410个语句,提供了7种负向情绪、5个负向情绪问题以及8种情感支持策略。伴随着该数据集诞生的是首次出现的情感支持对话(ESC)任务。

待更新

发布时间:

论文链接:

数据集链接:

数据集语言:

数据集模态:

数据集描述:

个性对话数据集

PERSONA-CHAT

发布时间:2018年

论文链接:https://www.aclweb.org/anthology/P18-1205/

数据集链接:https://github.com/facebookresearch/ParlAI/tree/master/projects/personachat

数据集语言:英文

数据集模态:文本

数据集描述:PERSONA-CHAT包括10981个对话以及164356个语句,由1155个人参与对话,每个人指定了至少5句profile句子表示其个性。

PersonalDialog

发布时间:2019年

论文链接:https://arxiv.org/abs/1901.09672

数据集链接:https://github.com/silverriver/PersonalDilaog

Please contact [[email protected]] for the PersonalDialog dataset

数据集语言:中文

数据集模态:文本

数据集描述:该数据集包括20.83M个对话、56.25M个句子,对于每个说话人,提供了5种个性特征(Age, Gender, Location, Interest, self descriptions)。

待更新

发布时间:

论文链接:

数据集链接:

数据集语言:

数据集模态:

数据集描述:

策略控制对话生成

PsyQA

发布时间:2021年

论文链接:https://arxiv.org/abs/2106.01702

数据集链接:https://github.com/thu-coai/PsyQA

数据集语言:中文

数据集模态:文本

数据集描述:一个用于生成心理健康支持长篇咨询文本的中文数据集,该数据集主要收集了壹心理社区的问答数据,标注了6种助人策略,总共包括了22346个问题以及56063个回复。

待更新

发布时间:

论文链接:

数据集链接:

数据集语言:

数据集模态:

数据集描述: