链接:戳这里
题意:
二维平面上给出n(奇数)个点,要求找出能包围n/2+1个点的面积最小的矩形,该矩形平行于坐标轴
思路:
枚举矩形的width的边界,然后把框起来的点按y排序,枚举当前y,然后找到Y[I+m-1]的位置,统计最小面积
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int n;
struct point{
int x,y;
point(int x=0,int y=0):x(x),y(y){}
}s[330],p[330];
bool cmp1(point a,point b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
bool cmp2(point a,point b){
if(a.y==b.y) return a.x<b.x;
return a.y<b.y;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d%d",&s[i].x,&s[i].y);
if(n==1) {
printf("0\n");
continue;
}
int m=n/2+1;
sort(s+1,s+n+1,cmp1);
int ans=1e9;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
int num=0;
for(int k=1;k<=n;k++){
if(s[k].x>=s[i].x && s[k].x<=s[j].x) p[++num]=s[k];
}
sort(p+1,p+num+1,cmp2);
int X1=s[i].x;
int X2=s[j].x;
for(int k=1;k<=num-m+1;k++){
int Y1=p[k].y;
int Y2=p[k+m-1].y;
ans=min(ans,(X2-X1)*(Y2-Y1));
}
}
}
printf("%d\n",ans);
}
return 0;
}