如果您是Windows用户并使用python 3,那么这篇文章将帮助您在python中进行并行编程。当您运行通常的多处理库的池编程时,您将收到有关程序中主函数的错误。这是因为windows没有fork()功能。以下帖子正在解决上述问题。
由于我使用的是python 3,我将程序改为:from types import FunctionTypeimport marshaldef _applicable(*args, **kwargs):
name = kwargs['__pw_name']
code = marshal.loads(kwargs['__pw_code'])
gbls = globals() #gbls = marshal.loads(kwargs['__pw_gbls'])
defs = marshal.loads(kwargs['__pw_defs'])
clsr = marshal.loads(kwargs['__pw_clsr'])
fdct = marshal.loads(kwargs['__pw_fdct'])
func = FunctionType(code, gbls, name, defs, clsr)
func.fdct = fdct del kwargs['__pw_name']
del kwargs['__pw_code']
del kwargs['__pw_defs']
del kwargs['__pw_clsr']
del kwargs['__pw_fdct']
return func(*args, **kwargs)def make_applicable(f, *args, **kwargs):
if not isinstance(f, FunctionType): raise ValueError('argument must be a function')
kwargs['__pw_name'] = f.__name__ # edited
kwargs['__pw_code'] = marshal.dumps(f.__code__) # edited
kwargs['__pw_defs'] = marshal.dumps(f.__defaults__) # edited
kwargs['__pw_clsr'] = marshal.dumps(f.__closure__) # edited
kwargs['__pw_fdct'] = marshal.dumps(f.__dict__) # edited
return _applicable, args, kwargsdef _mappable(x):
x,name,code,defs,clsr,fdct = x
code = marshal.loads(code)
gbls = globals() #gbls = marshal.loads(gbls)
defs = marshal.loads(defs)
clsr = marshal.loads(clsr)
fdct = marshal.loads(fdct)
func = FunctionType(code, gbls, name, defs, clsr)
func.fdct = fdct return func(x)def make_mappable(f, iterable):
if not isinstance(f, FunctionType): raise ValueError('argument must be a function')
name = f.__name__ # edited
code = marshal.dumps(f.__code__) # edited
defs = marshal.dumps(f.__defaults__) # edited
clsr = marshal.dumps(f.__closure__) # edited
fdct = marshal.dumps(f.__dict__) # edited
return _mappable, ((i,name,code,defs,clsr,fdct) for i in iterable)
在这个函数之后,上面的问题代码也改变了一点:from multiprocessing import Poolfrom poolable import make_applicable, make_mappabledef cube(x):
return x**3if __name__ == "__main__":
pool = Pool(processes=2)
results = [pool.apply_async(*make_applicable(cube,x)) for x in range(1,7)]
print([result.get(timeout=10) for result in results])
我得到的输出为:[1, 8, 27, 64, 125, 216]
我认为这篇文章可能对某些Windows用户有用。