文章目录
-
- 1线程池基础使用
-
- 1.1 概述
- 1.2 线程池的优点
- 1.3 Exector继承图
- 1.4 ExecutorService接口
- 1.5 Executors工具类
-
- 1.5.1 生成各种线程池的方法
- 1.5.2 方法的使用示例
- 1.5.3 各个方法的源码
-
- 返回ThreadPoolExecutor对象的方法:
- 返回ScheduledThreadPoolExecutor对象的方法:
- 返回ForkJoinPool对象的方法
- 1.2.5 线程池的工作流程
- 1.2.6 ThreadPoolExecutor参数
- 1.2.7 自定义线程池
- ---------分割线------下面内容面试不太涉及---------
- 2.ThreadPoolExecutor源码分析
-
- 2.1、常用变量的解释
- 2.2、构造方法
- 2.3、提交执行task的过程
- 2.4、addworker源码解析
- 2.5、线程池worker任务单元
- 2.6、核心线程执行逻辑-runworker
- 3. WorkStealingPool---ForkJoinPool
-
-
- 3.1 ForkJoinPool与ThreadPoolExecutor的区别
- 3.2 可以添加到ForkJoinPool中的任务类型
-
1线程池基础使用
1.1 概述
线程的创建和销毁消耗的资源都非常大,我们提前创建好多个线程,放入线程池中,使用时直接获取,使用完毕后再归还到线程池中,这样就避免了创建和销毁,实现重复利用。在实际的开发中我们都使用这个方法。java通过Executor这个工厂类向我们提供各种的线程池。
1.2 线程池的优点
- 减少线程的创建时间,提高相应速度
- 重复利用线程池中的线程,降低资源消耗
- 便于线程的管理,比如可以控制 核心池的大小,最大线程数等。
1.3 Exector继承图
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z8z0t9eZ-1603327309491)(/Users/luca/MarkText-img-Support/Executor继承图.png)]
1.4 ExecutorService接口
- ExecutorService: 真正的线程池接口。常见子类ThreadPoolExecutor,ScheduledPoolExecutor, ForkJoinPool
- 其中定义的三个常用的方法:
-
Future submit(Callable task): 执行任务,有返回值,一般又来执行
Callable
- void shutdown() : 关闭连接池
-
void execute(Runnable command) : 执行任务/命令,没有返回值,一般用来执行
Runnable
-
1.5 Executors工具类
1.5.1 生成各种线程池的方法
Executors: 工具类、线程池的工具类,用于创建并返回不同类型的线程池
- Executors.newCachedThreadPool(): 创建一个可根据需要创建新线程的线程池
- Executors.newFixedThreadPool(n); 创建一个可重用固定线程数的线程池
- Executors.newSingleThreadExecutor() : 创建一个只有一个线程的线程池
- Executors.newScheduledThreadPool(n): 创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。
下面橙色方块中的是Executors中的方法,返回对应黄色方块中的对象,而黄色方块中的类都是ExecutorService的直接或间接子类.
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GKFdMXwV-1603327309500)(/Users/luca/MarkText-img-Support/2020-07-24-10-40-11-image.png)]
1.5.2 方法的使用示例
如何使用工具类提供的方法?以ThreadPoolExecutor为例
class NumThread implements Runnable{
@Override
public void run() {
for (int i = 0; i <100 ; i++) {
System.out.println(Thread.currentThread().getName()+": " + i);
}
}
}
public class ThreadPoolTest {
public static void main(String[] args) {
/*使用工具类创建一个固定大小为10的线程池,其实我们是直到这个线程池的类型是
ThreadPoolExecutor类型,但是所有线程池的父接口都是ExecutorService,所以
我们现将其声明为ExecutorService,之后再做强转*/
ExecutorService executorService = Executors.newFixedThreadPool(10);
//将其强制转换
ThreadPoolExecutor service = (ThreadPoolExecutor) executorService;
//下面是对线程池的一些设置
service.setCorePoolSize(5);
//service.setKeepAliveTime();
service.setMaximumPoolSize(20);
executorService.execute(new NumThread());
//executorService.submit(); 用于Callable
executorService.shutdown();
}
}
1.5.3 各个方法的源码
返回ThreadPoolExecutor对象的方法:
//1.newFixedThreadPool:调用的是ThreadPoolExecutor的构造器
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);
}
//2.newSingleThreadExecutor:调用的也是ThreadPoolExecutor的构造器
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
//3.newCachedThreadPool:调用的还是ThreadPoolExecutor的构造器
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
10L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
返回ScheduledThreadPoolExecutor对象的方法:
//1.newScheduledThreadPool:调用的是ScheduledThreadPoolExecutor的构造器
public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
//2.newSingleThreadScheduledExecutor:调用的也是ScheduledThreadPoolExecutor的构造器
public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1));
// 虽然返回的是DelegatedScheduledExecutorService,但其实还是ScheduledThreadPoolExecutor
}
返回ForkJoinPool对象的方法
//newWorkStealingPool:调用的是ForkJoinPool的构造器
public static ExecutorService newWorkStealingPool(int parallelism) {
return new ForkJoinPool
(parallelism,
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null, true);
}
1.2.5 线程池的工作流程
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-i811OJea-1603327309574)(/Users/luca/MarkText-img-Support/2020-07-24-10-46-48-image.png)]
1.2.6 ThreadPoolExecutor参数
以ThreadPoolExecutor的构造器为例:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
//自定义线程池
public static void SelfMakingThreadPoolExecutorTest(){
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
1, //核心线程数为1
2, //最大线程数为2
10, //非核心线程超过10(单位为秒)被闲置,则回收
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(5),
//使用ArrayBlockingQueue 里面可以装5个任务
Executors.defaultThreadFactory();
);
}
参数:
-
- the number of threads to keep in the pool, even if they are idle, unlesscorePoolSize
is setallowCoreThreadTimeOut
-
- the maximum number of threads to allow in the poolmaximumPoolSize
-
- when the number of threads is greater than the core, this is the maximum time that excess idle threads will wait for new tasks before terminating.keepAliveTime
-
- the time unit for theunit
argumentkeepAliveTime
-
- the queue to use for holding tasks before they are executed. This queue will hold only theworkQueue
tasks submitted by theRunnable
method. 这里写的是阻塞队列,阻塞队列也有很多种,更具具体的需求来选择不同的队列。execute
-
threadFactory
- the factory to use when the executor creates a new thread
这个参数要实现ThreadFactory接口;这个工厂主要指定如何创建一个线程,比如线程的名字是什么,线程的优先级是什么,线程是否为守护线程等
(我们一般不提供这个参数,使用默认的Executors.defaultThreadFactory() )
-
- the handler to use when execution is blocked because the thread bounds and queue capacities are reachedhandler
- 拒绝策略,但所有线程正在使用,已经到达最大线程数,阻塞队列也已经满时,执行拒绝策略。
- JDK默认给我们提供了4种拒绝策略:
- AbortPolicy:扔掉线程,并抛异常
- DiscardPolicy:扔掉,但是不抛异常
- DiscardOldestPolicy:扔掉排队时间最久的,把新来的这个线程放入阻塞队列中
- CallerRunsPolicy:调用者处理任务,哪一个线程向线程池提交的任务,就把这个任务还给谁去处理
- 我们也可以自己定义。(我们一般不提供这个参数,使用默认的)
1.2.7 自定义线程池
(我们拿ThreadPoolExecutor为例,其他的也一样) 熟悉了这七个参数后,我们就可以自己创建线程池了。
//自定义线程池
public static void SelfMakingThreadPoolExecutorTest(){
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1,
2,
10,
TimeUnit.SECONDS,
new ArrayBlockingQueue(5));
threadPoolExecutor.execute(new Runnable() {
@Override
public void run() {
System.out.println("自定义线程池");
}
});
}
---------分割线------下面内容面试不太涉及---------
2.ThreadPoolExecutor源码分析
2.1、常用变量的解释
// 1. `ctl`,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 2. `COUNT_BITS`,`Integer.SIZE`为32,所以`COUNT_BITS`为29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 3. `CAPACITY`,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
// 5. `runStateOf()`,获取线程池状态,通过按位与操作,低29位将全部变成0
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 6. `workerCountOf()`,获取线程池worker数量,通过按位与操作,高3位将全部变成0
private static int workerCountOf(int c) { return c & CAPACITY; }
// 7. `ctlOf()`,根据线程池状态和线程池worker数量,生成ctl值
private static int ctlOf(int rs, int wc) { return rs | wc; }
/*
* Bit field accessors that don't require unpacking ctl.
* These depend on the bit layout and on workerCount being never negative.
*/
// 8. `runStateLessThan()`,线程池状态小于xx
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
// 9. `runStateAtLeast()`,线程池状态大于等于xx
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
2.2、构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
// 基本类型参数校验
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
// 空指针校验
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
// 根据传入参数`unit`和`keepAliveTime`,将存活时间转换为纳秒存到变量`keepAliveTime `中
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
2.3、提交执行task的过程
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
// worker数量比核心线程数小,直接创建worker执行任务
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))//true表示为核心线程
return;
c = ctl.get();
}
// worker数量超过核心线程数,任务直接进入队列
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。
// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。
if (! isRunning(recheck) && remove(command))
reject(command);
// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。
// 这儿有3点需要注意:
// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态
// 2. addWorker第2个参数表示是否创建核心线程
// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作
else if (!addWorker(command, false))
reject(command);
}
2.4、addworker源码解析
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
// 外层自旋
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
/* 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价
(rs > SHUTDOWN) ||
(rs == SHUTDOWN && firstTask != null) ||
(rs == SHUTDOWN && workQueue.isEmpty())
1. 线程池状态大于SHUTDOWN时,直接返回false
2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false
3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false
Check if queue empty only if necessary.*/
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
// 内层自旋
for (;;) {
int wc = workerCountOf(c);
// worker数量超过容量,直接返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 使用CAS的方式增加worker数量。
// 若增加成功,则直接跳出外层循环进入到第二部分
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 线程池状态发生变化,对外层循环进行自旋
if (runStateOf(c) != rs)
continue retry;
// 其他情况,直接内层循环进行自旋即可
// else CAS failed due to workerCount change; retry inner loop
}
}
/*从头到这里,这些代码做的工作就是将线程数量+1,(线程数量就是clt的后29位)
在多线程的状态下+1,为了保证效率,它没有使用sych,所以代码会很多
*/
----------------------------------------------------------------------
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
// worker的添加必须是串行的,因此需要加锁
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
// 这儿需要重新检查线程池状态
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// worker已经调用过了start()方法,则不再创建worker
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// worker创建并添加到workers成功
workers.add(w);
// 更新`largestPoolSize`变量
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 启动worker线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
2.5、线程池worker任务单元
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// 省略代码...
}
2.6、核心线程执行逻辑-runworker
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
// 调用unlock()是为了让外部可以中断
w.unlock(); // allow interrupts
// 这个变量用于判断是否进入过自旋(while循环)
boolean completedAbruptly = true;
try {
// 这儿是自旋
// 1. 如果firstTask不为null,则执行firstTask;
// 2. 如果firstTask为null,则调用getTask()从队列获取任务。
// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待
while (task != null || (task = getTask()) != null) {
// 这儿对worker进行加锁,是为了达到下面的目的
// 1. 降低锁范围,提升性能
// 2. 保证每个worker执行的任务是串行的
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 如果线程池正在停止,则对当前线程进行中断操作
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
// 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。
// 这两个方法在当前类里面为空实现。
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
// 帮助gc
task = null;
// 已完成任务数加一
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 自旋操作被退出,说明线程池正在结束
processWorkerExit(w, completedAbruptly);
}
}
3. WorkStealingPool—ForkJoinPool
Executor.WorkStealingPool()返回的是ForkJoinPool对象,ForkJoinPool对象的特点:
- Fork分叉,join汇总;这个池子就是用来将一个大的任务分解成小的任务,之后在汇总起来
- 它可以用很少的线程来执行多个子任务
- cpu密集型
3.1 ForkJoinPool与ThreadPoolExecutor的区别
ThreadPoolExecutor是有一个线程的集合(存储在HashSet中)和一个任务队列(也就是我们的BlockingQueue),所有的线程从同一个任务队列中取出任务,而ForkJoinPool是每一个线程都有一个单独的队列,当一个线程执行完自己的任务之后,会去其他的线程“偷”任务
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RqNN5wrj-1603327309586)(/Users/luca/MarkText-img-Support/2020-09-02-22-31-32-image.png)]
3.2 可以添加到ForkJoinPool中的任务类型
因为ForkJoinPool是可以拆分任务的,所以我们要求这个任务是可拆分的,可汇总的。所以我们不能继承传统的Runnable或Callerable接口,我们要为他定义一种特殊的类型。这个类就是ForkJoinTask
public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
//...
}
ForkJoinTask在实际开发中比较原始,我们可以使用RecursiveAction(不带返回值;它叫做“递归动作”,不停的切分不就是一个递归吗?)
当然,如果我们需要返回值我们可以继承RecursiveTask类