天天看点

java线程池使用及ThreadPoolExecutor源码分析

文章目录

    • 1线程池基础使用
      • 1.1 概述
      • 1.2 线程池的优点
      • 1.3 Exector继承图
      • 1.4 ExecutorService接口
      • 1.5 Executors工具类
        • 1.5.1 生成各种线程池的方法
        • 1.5.2 方法的使用示例
        • 1.5.3 各个方法的源码
          • 返回ThreadPoolExecutor对象的方法:
          • 返回ScheduledThreadPoolExecutor对象的方法:
          • 返回ForkJoinPool对象的方法
      • 1.2.5 线程池的工作流程
      • 1.2.6 ThreadPoolExecutor参数
      • 1.2.7 自定义线程池
    • ---------分割线------下面内容面试不太涉及---------
    • 2.ThreadPoolExecutor源码分析
      • 2.1、常用变量的解释
      • 2.2、构造方法
      • 2.3、提交执行task的过程
      • 2.4、addworker源码解析
      • 2.5、线程池worker任务单元
      • 2.6、核心线程执行逻辑-runworker
    • 3. WorkStealingPool---ForkJoinPool
        • 3.1 ForkJoinPool与ThreadPoolExecutor的区别
      • 3.2 可以添加到ForkJoinPool中的任务类型

1线程池基础使用

1.1 概述

线程的创建和销毁消耗的资源都非常大,我们提前创建好多个线程,放入线程池中,使用时直接获取,使用完毕后再归还到线程池中,这样就避免了创建和销毁,实现重复利用。在实际的开发中我们都使用这个方法。java通过Executor这个工厂类向我们提供各种的线程池。

1.2 线程池的优点

  • 减少线程的创建时间,提高相应速度
  • 重复利用线程池中的线程,降低资源消耗
  • 便于线程的管理,比如可以控制 核心池的大小,最大线程数等。

1.3 Exector继承图

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z8z0t9eZ-1603327309491)(/Users/luca/MarkText-img-Support/Executor继承图.png)]

1.4 ExecutorService接口

  1. ExecutorService: 真正的线程池接口。常见子类ThreadPoolExecutor,ScheduledPoolExecutor, ForkJoinPool
  2. 其中定义的三个常用的方法:
    • Future submit(Callable task): 执行任务,有返回值,一般又来执行

      Callable

    • void shutdown() : 关闭连接池
    • void execute(Runnable command) : 执行任务/命令,没有返回值,一般用来执行

      Runnable

1.5 Executors工具类

1.5.1 生成各种线程池的方法

Executors: 工具类、线程池的工具类,用于创建并返回不同类型的线程池

  • Executors.newCachedThreadPool(): 创建一个可根据需要创建新线程的线程池
  • Executors.newFixedThreadPool(n); 创建一个可重用固定线程数的线程池
  • Executors.newSingleThreadExecutor() : 创建一个只有一个线程的线程池
  • Executors.newScheduledThreadPool(n): 创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。

下面橙色方块中的是Executors中的方法,返回对应黄色方块中的对象,而黄色方块中的类都是ExecutorService的直接或间接子类.

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GKFdMXwV-1603327309500)(/Users/luca/MarkText-img-Support/2020-07-24-10-40-11-image.png)]

1.5.2 方法的使用示例

如何使用工具类提供的方法?以ThreadPoolExecutor为例

class NumThread implements Runnable{
    @Override
    public void run() {
        for (int i = 0; i <100 ; i++) {
            System.out.println(Thread.currentThread().getName()+": " + i);
        }
    }
}
public class ThreadPoolTest {
    public static void main(String[] args) {
        /*使用工具类创建一个固定大小为10的线程池,其实我们是直到这个线程池的类型是
        ThreadPoolExecutor类型,但是所有线程池的父接口都是ExecutorService,所以
        我们现将其声明为ExecutorService,之后再做强转*/
        ExecutorService executorService = Executors.newFixedThreadPool(10);
        //将其强制转换
        ThreadPoolExecutor service = (ThreadPoolExecutor) executorService;
        //下面是对线程池的一些设置
        service.setCorePoolSize(5);
        //service.setKeepAliveTime();
        service.setMaximumPoolSize(20);
        executorService.execute(new NumThread());
        //executorService.submit(); 用于Callable

        executorService.shutdown();
    }
}
           

1.5.3 各个方法的源码

返回ThreadPoolExecutor对象的方法:
//1.newFixedThreadPool:调用的是ThreadPoolExecutor的构造器
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>(),
                                  threadFactory);
}
//2.newSingleThreadExecutor:调用的也是ThreadPoolExecutor的构造器
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>()));
}
//3.newCachedThreadPool:调用的还是ThreadPoolExecutor的构造器
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  10L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}
           
返回ScheduledThreadPoolExecutor对象的方法:
//1.newScheduledThreadPool:调用的是ScheduledThreadPoolExecutor的构造器
    public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }
    //2.newSingleThreadScheduledExecutor:调用的也是ScheduledThreadPoolExecutor的构造器
    public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1));
    // 虽然返回的是DelegatedScheduledExecutorService,但其实还是ScheduledThreadPoolExecutor
    }
           
返回ForkJoinPool对象的方法
//newWorkStealingPool:调用的是ForkJoinPool的构造器
    public static ExecutorService newWorkStealingPool(int parallelism) {
        return new ForkJoinPool
            (parallelism,
             ForkJoinPool.defaultForkJoinWorkerThreadFactory,
             null, true);
    }
           

1.2.5 线程池的工作流程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-i811OJea-1603327309574)(/Users/luca/MarkText-img-Support/2020-07-24-10-46-48-image.png)]

1.2.6 ThreadPoolExecutor参数

以ThreadPoolExecutor的构造器为例:

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
 //自定义线程池
    public static void SelfMakingThreadPoolExecutorTest(){
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
                1, //核心线程数为1
                2, //最大线程数为2
                10, //非核心线程超过10(单位为秒)被闲置,则回收
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<Runnable>(5),
//使用ArrayBlockingQueue 里面可以装5个任务
                Executors.defaultThreadFactory();
        );
    }
           

参数:

  1. corePoolSize

    - the number of threads to keep in the pool, even if they are idle, unless

    allowCoreThreadTimeOut

    is set
  2. maximumPoolSize

    - the maximum number of threads to allow in the pool
  3. keepAliveTime

    - when the number of threads is greater than the core, this is the maximum time that excess idle threads will wait for new tasks before terminating.
  4. unit

    - the time unit for the

    keepAliveTime

    argument
  5. workQueue

    - the queue to use for holding tasks before they are executed. This queue will hold only the

    Runnable

    tasks submitted by the

    execute

    method. 这里写的是阻塞队列,阻塞队列也有很多种,更具具体的需求来选择不同的队列。
  6. threadFactory

    - the factory to use when the executor creates a new thread

    这个参数要实现ThreadFactory接口;这个工厂主要指定如何创建一个线程,比如线程的名字是什么,线程的优先级是什么,线程是否为守护线程等

    (我们一般不提供这个参数,使用默认的Executors.defaultThreadFactory() )

  7. handler

    - the handler to use when execution is blocked because the thread bounds and queue capacities are reached
    1. 拒绝策略,但所有线程正在使用,已经到达最大线程数,阻塞队列也已经满时,执行拒绝策略。
    2. JDK默认给我们提供了4种拒绝策略:
      1. AbortPolicy:扔掉线程,并抛异常
      2. DiscardPolicy:扔掉,但是不抛异常
      3. DiscardOldestPolicy:扔掉排队时间最久的,把新来的这个线程放入阻塞队列中
      4. CallerRunsPolicy:调用者处理任务,哪一个线程向线程池提交的任务,就把这个任务还给谁去处理
    3. 我们也可以自己定义。(我们一般不提供这个参数,使用默认的)

1.2.7 自定义线程池

(我们拿ThreadPoolExecutor为例,其他的也一样) 熟悉了这七个参数后,我们就可以自己创建线程池了。

//自定义线程池
    public static void SelfMakingThreadPoolExecutorTest(){
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1,
                2,
                10,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue(5));


        threadPoolExecutor.execute(new Runnable() {
            @Override
            public void run() {
                System.out.println("自定义线程池");
            }
        });
    }
           

---------分割线------下面内容面试不太涉及---------

2.ThreadPoolExecutor源码分析

2.1、常用变量的解释

// 1. `ctl`,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 2. `COUNT_BITS`,`Integer.SIZE`为32,所以`COUNT_BITS`为29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 3. `CAPACITY`,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

// runState is stored in the high-order bits
// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

// Packing and unpacking ctl
// 5. `runStateOf()`,获取线程池状态,通过按位与操作,低29位将全部变成0
private static int runStateOf(int c)     { return c & ~CAPACITY; }
// 6. `workerCountOf()`,获取线程池worker数量,通过按位与操作,高3位将全部变成0
private static int workerCountOf(int c)  { return c & CAPACITY; }
// 7. `ctlOf()`,根据线程池状态和线程池worker数量,生成ctl值
private static int ctlOf(int rs, int wc) { return rs | wc; }

/*
 * Bit field accessors that don't require unpacking ctl.
 * These depend on the bit layout and on workerCount being never negative.
 */
// 8. `runStateLessThan()`,线程池状态小于xx
private static boolean runStateLessThan(int c, int s) {
    return c < s;
}
// 9. `runStateAtLeast()`,线程池状态大于等于xx
private static boolean runStateAtLeast(int c, int s) {
    return c >= s;
}
           

2.2、构造方法

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    // 基本类型参数校验
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    // 空指针校验
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    // 根据传入参数`unit`和`keepAliveTime`,将存活时间转换为纳秒存到变量`keepAliveTime `中
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}
           

2.3、提交执行task的过程

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     *
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     */
    int c = ctl.get();
    // worker数量比核心线程数小,直接创建worker执行任务
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))//true表示为核心线程
            return;
        c = ctl.get();
    }
    // worker数量超过核心线程数,任务直接进入队列
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        // 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。
        // 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。
        if (! isRunning(recheck) && remove(command))
            reject(command);
        // 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    // 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。
    // 这儿有3点需要注意:
    // 1. 线程池不是运行状态时,addWorker内部会判断线程池状态
    // 2. addWorker第2个参数表示是否创建核心线程
    // 3. addWorker返回false,则说明任务执行失败,需要执行reject操作
    else if (!addWorker(command, false))
        reject(command);
}
           

2.4、addworker源码解析

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    // 外层自旋
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        /* 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价
         (rs > SHUTDOWN) || 
         (rs == SHUTDOWN && firstTask != null) || 
         (rs == SHUTDOWN && workQueue.isEmpty())
         1. 线程池状态大于SHUTDOWN时,直接返回false
         2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false
         3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false
         Check if queue empty only if necessary.*/

        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        // 内层自旋
        for (;;) {
            int wc = workerCountOf(c);
            // worker数量超过容量,直接返回false
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 使用CAS的方式增加worker数量。
            // 若增加成功,则直接跳出外层循环进入到第二部分
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            // 线程池状态发生变化,对外层循环进行自旋
            if (runStateOf(c) != rs)
                continue retry;
            // 其他情况,直接内层循环进行自旋即可
            // else CAS failed due to workerCount change; retry inner loop
        } 
    }
/*从头到这里,这些代码做的工作就是将线程数量+1,(线程数量就是clt的后29位)
在多线程的状态下+1,为了保证效率,它没有使用sych,所以代码会很多
*/
----------------------------------------------------------------------
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            // worker的添加必须是串行的,因此需要加锁
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                // 这儿需要重新检查线程池状态
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    // worker已经调用过了start()方法,则不再创建worker
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    // worker创建并添加到workers成功
                    workers.add(w);
                    // 更新`largestPoolSize`变量
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            // 启动worker线程
            if (workerAdded) {
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        // worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}
           

2.5、线程池worker任务单元

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;

    /** Thread this worker is running in.  Null if factory fails. */
    final Thread thread;
    /** Initial task to run.  Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;

    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        // 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker
        this.thread = getThreadFactory().newThread(this);
    }

    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);
    }

    // 省略代码...
}
           

2.6、核心线程执行逻辑-runworker

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    // 调用unlock()是为了让外部可以中断
    w.unlock(); // allow interrupts
    // 这个变量用于判断是否进入过自旋(while循环)
    boolean completedAbruptly = true;
    try {
        // 这儿是自旋
        // 1. 如果firstTask不为null,则执行firstTask;
        // 2. 如果firstTask为null,则调用getTask()从队列获取任务。
        // 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待
        while (task != null || (task = getTask()) != null) {
            // 这儿对worker进行加锁,是为了达到下面的目的
            // 1. 降低锁范围,提升性能
            // 2. 保证每个worker执行的任务是串行的
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            // 如果线程池正在停止,则对当前线程进行中断操作
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            // 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。
            // 这两个方法在当前类里面为空实现。
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                // 帮助gc
                task = null;
                // 已完成任务数加一 
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        // 自旋操作被退出,说明线程池正在结束
        processWorkerExit(w, completedAbruptly);
    }
}
           

3. WorkStealingPool—ForkJoinPool

Executor.WorkStealingPool()返回的是ForkJoinPool对象,ForkJoinPool对象的特点:

  • Fork分叉,join汇总;这个池子就是用来将一个大的任务分解成小的任务,之后在汇总起来
  • 它可以用很少的线程来执行多个子任务
  • cpu密集型

3.1 ForkJoinPool与ThreadPoolExecutor的区别

ThreadPoolExecutor是有一个线程的集合(存储在HashSet中)和一个任务队列(也就是我们的BlockingQueue),所有的线程从同一个任务队列中取出任务,而ForkJoinPool是每一个线程都有一个单独的队列,当一个线程执行完自己的任务之后,会去其他的线程“偷”任务

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RqNN5wrj-1603327309586)(/Users/luca/MarkText-img-Support/2020-09-02-22-31-32-image.png)]

3.2 可以添加到ForkJoinPool中的任务类型

因为ForkJoinPool是可以拆分任务的,所以我们要求这个任务是可拆分的,可汇总的。所以我们不能继承传统的Runnable或Callerable接口,我们要为他定义一种特殊的类型。这个类就是ForkJoinTask

public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
    //...
}
           

ForkJoinTask在实际开发中比较原始,我们可以使用RecursiveAction(不带返回值;它叫做“递归动作”,不停的切分不就是一个递归吗?)

当然,如果我们需要返回值我们可以继承RecursiveTask类