一:前言
最近给一个非Java方向的朋友讲了下双亲委派模型,朋友让我写篇文章深度研究下JVM的ClassLoader,我确实也好久没写JVM相关的文章了,有点手痒痒,涂了皮炎平也抑制不住。
我在向朋友解释的时候是这么说的
:双亲委派模型中,ClassLoader在加载类的时候,会先交由它的父ClassLoader加载,只有当父ClassLoader加载失败的情况下,才会尝试自己去加载。这样可以实现部分类的复用,又可以实现部分类的隔离,因为不同ClassLoader加载的类是互相隔离的。
不过贸然的向别人解释双亲委派模型是不妥的,如果在不了解JVM的类加载机制的情况下,又如何能很好的理解“不同ClassLoader加载的类是互相隔离的”这句话呢?所以为了理解双亲委派,最好的方式,就是先了解下ClassLoader的加载流程。
二:Java 类是如何被加载的
2.1:何时加载类
我们首先要清楚的是,Java类何时会被加载?
《深入理解Java虚拟机》给出的答案是:
1:遇到new、getstatic、putstatic 等指令时。 2:对类进行反射调用的时候。 3:初始化某个类的子类的时候。 4:虚拟机启动时会先加载设置的程序主类。 5:使用JDK 1.7 的动态语言支持的时候。其实要我说,最通俗易懂的答案就是:当运行过程中需要这个类的时候。
那么我们不妨就从如何加载类开始说起。
2.2:怎么加载类
利用ClassLoader加载类很简单,直接调用ClassLoder的loadClass()方法即可,我相信大家都会,但是还是要举个栗子:
public
上面这段代码便实现了让ClassLoader去加载 “com.wangxiandeng.test.Dog” 这个类,是不是 so easy。但是JDK 提供的 API 只是冰山一角,看似很简单的一个调用,其实隐藏了非常多的细节,我这个人吧,最喜欢做的就是去揭开 API 的封装,一探究竟。
2.3:JVM 是怎么加载类的
JVM 默认用于加载用户程序的ClassLoader为AppClassLoader,不过无论是什么ClassLoader,它的根父类都是java.lang.ClassLoader。在上面那个例子中,loadClass()方法最终会调用到ClassLoader.definClass1()中,这是一个 Native 方法。
static
看到 Native 方法莫心慌,不要急,打开OpenJDK源码,我等继续走马观花便是!
definClass1()对应的 JNI 方法为
Java_java_lang_ClassLoader_defineClass1()JNIEXPORT
Java_java_lang_ClassLoader_defineClass1 主要是调用了JVM_DefineClassWithSource()加载类,跟着源码往下走,会发现最终调用的是 jvm.cpp 中的 jvm_define_class_common()方法。
static
上面这段逻辑主要就是利用 ClassFileStream 将要加载的class文件转成文件流,然后调用SystemDictionary::resolve_from_stream(),生成 Class 在 JVM 中的代表:
Klass。对于Klass,大家可能不太熟悉,但是在这里必须得了解下。说白了,它就是JVM 用来定义一个Java Class 的数据结构。不过Klass只是一个基类,Java Class 真正的数据结构定义在
InstanceKlass中。
class
可见 InstanceKlass 中记录了一个 Java 类的所有属性,包括注解、方法、字段、内部类、常量池等信息。这些信息本来被记录在Class文件中,所以说,InstanceKlass就是一个Java Class 文件被加载到内存后的形式。
再回到上面的类加载流程中,这里调用了 SystemDictionary::resolve_from_stream(),将 Class 文件加载成内存中的 Klass。
resolve_from_stream() 便是重中之重!主要逻辑有下面几步: 1:判断是否允许并行加载类,并根据判断结果进行加锁。bool
如果允许并行加载,则不会对ClassLoader进行加锁,只对SystemDictionary加锁。否则,便会利用 ObjectLocker 对ClassLoader 加锁,保证同一个ClassLoader在同一时刻只能加载一个类。ObjectLocker 会在其构造函数中获取锁,并在析构函数中释放锁。
允许并行加载的好处便是精细化了锁粒度,这样可以在同一时刻加载多个Class文件。
2:解析文件流,生成 InstanceKlass。InstanceKlass
3:利用SystemDictionary注册生成的 Klass。 SystemDictionary 是用来帮助保存 ClassLoader 加载过的类信息的。准确点说,SystemDictionary并不是一个容器,真正用来保存类信息的容器是 Dictionary,每个ClassLoaderData 中都保存着一个私有的 Dictionary,而 SystemDictionary 只是一个拥有很多静态方法的工具类而已。
我们来看看注册的代码:
if
如果允许并行加载 ,那么前面就不会对ClassLoader加锁,所以在同一时刻,可能对同一Class文件加载了多次。但是同一Class在同一ClassLoader中必须保持唯一性,所以这里会先利用 SystemDictionary 查询 ClassLoader 是否已经加载过相同 Class。
- 如果已经加载过,那么就将当前线程刚刚加载的InstanceKlass加入待回收列表,并将 InstanceKlass* k 重新指向利用SystemDictionary查询到的 InstanceKlass。
- 如果没有查询到,那么就将刚刚加载的 InstanceKlass 注册到 ClassLoader的 Dictionary 中 中。
虽然并行加载不会锁住ClassLoader,但是会在注册 InstanceKlass 时对 SystemDictionary 加锁,所以不需要担心InstanceKlass 在注册时的并发操作。
如果禁止了并行加载,那么直接利用SystemDictionary将 InstanceKlass 注册到 ClassLoader的 Dictionary 中即可。
resolve_from_stream()的主要流程就是上面三步,很明显,最重要的是第二步,从文件流生成InstanceKlass。生成InstanceKlass 调用的是 KlassFactory::create_from_stream()方法,它的主要逻辑就是下面这段代码。
ClassFileParser
原来 ClassFileParser 才是真正的主角啊!它才是将Class文件升华成InstanceKlass的幕后大佬! 2.4:不得不说的ClassFileParser
ClassFileParser 加载Class文件的入口便是 create_instance_klass()。顾名思义,用来创建InstanceKlass的。
create_instance_klass()主要就干了两件事:(1):为 InstanceKlass 分配内存
InstanceKlass
(2):分析Class文件,填充 InstanceKlass 内存区域
fill_instance_klass
我们先来说道说道第一件事,为 InstanceKlass 分配内存。 内存分配代码如下:
const
这里首先计算了InstanceKlass在内存中的大小,要知道,这个大小在Class 文件编译后就被确定了。
然后便 new 了一个新的 InstanceKlass 对象。这里并不是简单的在堆上分配内存,要注意的是
Klass 对 new 操作符进行了重载:void
分配 InstanceKlass 的时候调用了 Metaspace::allocate():
MetaWord
由此可见,InstanceKlass 是分配在 ClassLoader的 Metaspace(元空间) 的方法区中。从 JDK8 开始,HotSpot 就没有了永久代,类都分配在 Metaspace 中。Metaspace 和永久代不一样,采用的是 Native Memory,永久代由于受限于 MaxPermSize,所以当内存不够时会内存溢出。
分配完 InstanceKlass 内存后,便要着手第二件事,分析Class文件,填充 InstanceKlass 内存区域。ClassFileParser 在构造的时候就会开始分析Class文件,所以fill_instance_klass()中只需要填充即可。填充结束后,还会调用 java_lang_Class::create_mirror()创建 InstanceKlass 在Java 层的 Class 对象。
void
对于Class文件结构不熟悉的同学,可以看下:
《Jvm之用java解析class文件
》 到这儿,Class文件已经完成了华丽的转身,由冷冰冰的二进制文件,变成了内存中充满生命力的InstanceKlass。三:再谈双亲委派
如果你耐心的看完了上面的源码分析,你一定对 “不同ClassLoader加载的类是互相隔离的” 这句话的理解又上了一个台阶。
我们总结下:每个ClassLoader都有一个 Dictionary 用来保存它所加载的InstanceKlass信息。并且,每个 ClassLoader 通过锁,保证了对于同一个Class,它只会注册一份 InstanceKlass 到自己的 Dictionary 。正式由于上面这些原因,如果所有的 ClassLoader 都由自己去加载 Class 文件,就会导致对于同一个Class文件,存在多份InstanceKlass,所以即使是同一个Class文件,不同InstanceKlasss 衍生出来的实例类型也是不一样的。
举个栗子,我们自定义一个 ClassLoader,用来打破双亲委派模型:
public
再尝试加载Studen类,并实例化:
public
运行后便会抛出类型强转异常:
Exception
为什么呢?
因为实例化的Student对象所属的 InstanceKlass 是由CustomClassLoader加载生成的,而我们要强转的类型Student.Class 对应的 InstanceKlass 是由系统默认的ClassLoader生成的,所以本质上它们就是两个毫无关联的InstanceKlass,当然不能强转。
有同学问到:为什么
“强转的类型Student.Class 对应的 InstanceKlass 是由系统默认的ClassLoader生成的”?
其实很简单,我们反编译下字节码:
public
可以看到在利用加载的Class初始化实例后,调用了 checkcast 进行类型转化,checkcast 后的操作数 #12 即为Student这个类在常量池中的索引:
#12 = Class #52
下面我们可以看看 checkcast 在HotSpot中的实现。
HotSpot 目前有三种字节码执行引擎,目前采用的是模板解释器,可以看下我这篇文章:《汪先生:JVM之模板解释器》。
早期的HotSpot采用的是字节码解释器。模板解释器对于指令的执行都是用汇编写的,而字节码解释器采用的C++进行的翻译,为了看起来比较舒服,我们就不看汇编了,直接看字节码解释器就行了。如果你的汇编功底很好,当然也可以直接看模板解释器,我之前写的文章《汪先生:JVM之创建对象源码分析》这里就是分析模板解释器对于 new 指令的实现。
废话不多说,我们来看看字节码解释器对于checkcast的实现,代码在 bytecodeInterpreter.cpp 中
CASE
通过对上面代码的分析,我相信大家已经理解了
“强转的类型Student.Class 对应的 InstanceKlass 是由系统默认的ClassLoader生成的” 这句话了。双亲委派的好处是尽量保证了同一个Class文件只会生成一个InstanceKlass,但是某些情况,我们就不得不去打破双亲委派了,比如我们想实现Class隔离的时候。
四:总结
写完这篇文章,手也不痒了,甚爽!这篇文章从双亲委派讲到了Class文件的加载,最后又绕回到双亲委派,看似有点绕,其实只有理解了Class的加载机制,才能更好的理解类似双亲委派这样的机制,否则只死记硬背一些空洞的理论,是无法达到由内而外的理解高度的。
听说喜欢点关注的同学都长得帅