题意:
给定两个长度≤2000的数字a,b,保证a≤b,参数m≤2000,d∈[0,9]
magic number:=从左到右,奇数位不含d,偶数只能是d,且被m整除的数字
求区间[a,b]有多少个magic number
分析:
裸数位dp,f[i][mod]:=从高到低i位,且模m余mod的magic number数
转移就按照题目转移就好,然后特判一下a是不是
代码:
//
// Created by TaoSama on 2016-02-21
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = + , INF = , MOD = + ;
int n, m, d;
char a[N], b[N], *p;
void add(int& x, int y) {
if((x += y) >= MOD) x -= MOD;
}
int f[N][N];
int dfs(int i, int mod, int e) {
if(i == n + ) return !mod;
if(!e && ~f[i][mod]) return f[i][mod];
int ret = , to = e ? p[i] : ;
for(int x = ; x <= to; ++x) {
if(i & ) {
if(x == d) continue;
add(ret, dfs(i + , (mod * + x) % m, e && x == to));
} else {
if(x != d) continue;
add(ret, dfs(i + , (mod * + x) % m, e && x == to));
}
}
return e ? ret : f[i][mod] = ret;
}
bool test() {
int mod = ;
for(int i = ; i <= n; ++i) {
mod = (mod * + a[i]) % m;
if(i & ) {
if(a[i] == d) return false;
} else {
if(a[i] != d) return false;
}
}
return !mod;
}
int calc(char *a) {
p = a;
return dfs(, , );
}
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio();
while(scanf("%d%d%s%s", &m, &d, a + , b + ) == ) {
memset(f, -, sizeof f);
n = strlen(a + );
for(int i = ; a[i]; ++i) a[i] -= '0';
for(int i = ; b[i]; ++i) b[i] -= '0';
int ans = calc(b);
add(ans, MOD - calc(a) + test());
// printf("%d %d\n", calc(a), calc(b));
printf("%d\n", ans);
}
return ;
}