天天看点

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

💡 作者:韩信子@ShowMeAI

📘 深度学习实战系列:https://www.showmeai.tech/tutorials/42

📘 TensorFlow 实战系列:https://www.showmeai.tech/tutorials/43

📘 本文地址:https://www.showmeai.tech/article-detail/332

📢 声明:版权所有,转载请联系平台与作者并注明出处

📢 收藏ShowMeAI查看更多精彩内容

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

对于很多企业而言,电子邮件仍然是主要沟通渠道之一,很多正式的内容也要基于邮件传达,供应商、合作伙伴和公共管理部门也每天会有大量的电子邮件。邮件的信息提取和处理可能是一项耗时且重复的任务,对拥有大量客户的企业而言尤其是这样。

💡 场景 & 背景

有一些场景下,如果我们能借助于AI自动做一些内容和附件等识别,可以极大提高效率,例如以下这些场景:

  • 保险公司的客户索赔管理。
  • 电信和公用事业企业客户投诉处理。
  • 银行处理各种与抵押贷款相关的请求。
  • 旅游行业公司的预订相关电子邮件。

如果我们希望尽量智能与自动化地进行电子邮件处理,我们需要完成以下任务:

  • 电子邮件分流。我们希望智能理解邮件,并将其转到相应的专门业务部门进行处理。在AI的视角我们可以通过电子邮件的意图分类来尝试解决这个问题。
  • 信息提取。根据确定的意图,提取一些信息给到下游流程,例如在CRM系统中记录客户案例进行跟踪。

在本篇文章中,ShowMeAI 将专注于意图检测部分,我们将一起看一看如何设计一个AI系统来解决这个任务。

💦 场景 1

假设一家保险公司客户,想申请理赔与报销。 这个场景下他会填写保险报销表,并将其连同药物收据和银行 ID 文件附在电子邮件中。可能的一个电子邮件可能长这样:

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

💦 场景 2

假设一家银行的客户,搬家并对之前的某项服务费有疑问。 如果选择发送电子邮件来进行申请和处理,邮件可能长这样:

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

💡 实现方案

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

本文会涉及到NLP相关知识,有兴趣更系统全面了NLP知识的宝宝,建议阅读ShowMeAI 整理的自然语言处理相关教程和文章

📘深度学习教程:吴恩达专项课程 · 全套笔记解读

📘深度学习教程 | 自然语言处理与词嵌入

📘NLP教程 | 斯坦福CS224n · 课程带学与全套笔记解读

📘NLP教程(1) - 词向量、SVD分解与Word2Vec

📘NLP教程(2) - GloVe及词向量的训练与评估

💦 架构初览

我们前面提到了,在意图识别场景中,我们经常会视作『多分类问题』来处理,但在我们当前场景下,有可能邮件覆盖多个意图目的,或者本身意图之间有重叠,因此我们先将其视为多标签分类问题。

然而,在许多现实生活场景中,多标签分类系统可能会遇到一些问题:

  • 电子邮件在大多数情况下是关于一个主要意图,有时它们具有次要意图,在极少数情况下还有第三个意图。
  • 很难找到涵盖所有多标签组合的标签数据。

我们可以试着构建一个融合方案来解决,可以预测主要意图并检测剩余的次要意图和第三意图,我们可以设计多输出神经网络网络来实现这一点,如下图所示。

我们涉及到2类输入:电子邮件正文 和 附件,在深度学习场景下,我们都需要对它们做向量化标准。如下图的架构是一个可行的尝试方案:我们用transformer类的模型对正文进行编码和向量化标注,而对于附件,可以用相对简单的NLP编码器,比如TF-IDF。

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

💦 实现细节

① 电子邮件正文:AI理解&处理

整个方案中最重要的输入是正文数据,我们在深度学习中,需要把非结构化的数据表征为向量化形式,方便模型进行信息融合和建模,在自然语言处理NLP领域,我们也有一些典型的向量化嵌入技术可以进行对文本处理。

最『简单』的处理方法之一是使用 📘TF-iDF + 📘PCA。

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

对于文本(词与句)嵌入更现代一些的 NLP 方法,例如 Word2Vec 和 📘Doc2Vec ,它们分别使用浅层神经网络来学习单词和文本嵌入。大家可以使用

gensim

工具库或者

fasttext

工具库完成文本嵌入,也有很多预训练的词嵌入和文本嵌入的模型可以使用。

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料
关于 TF-IDF 和 DocVec 的详细知识,可以查看ShowMeAI 的文章 📘基于NLP文档嵌入技术的基础文本搜索引擎构建。
超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

现在最先进的技术是基于 transformer 的预训练语言模型(例如 📘BERT)来构建『上下文感知』文本嵌入。我们上面的方案中也是使用最先进的深度学习方法——直接使用 📘HuggingFace的 📘预训练模型 和 📘API 来构建正文文本嵌入。

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

transformer 系列的模型有很多隐层,我们可以有很多方式获取文本的向量化表征,比如对最后的隐层做『平均池化』获得文本嵌入,我们也可以用倒数第二层或倒数第三层(它们在理论上较少依赖于训练语言模型的文本语料库)。

对文本做嵌入表示的示例代码如下:

# 大家可以先命令行执行下列代码安装sentence-transformers
# pip install -U sentence-transformers

from sentence_transformers import SentenceTransformer
# 需要编码的文本内容列表
sentences = ["This is example sentence 1", "This is example sentence 2"]

# 编码,文本向量化嵌入表征
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
           

② 电子邮件附件:AI理解&处理

我们在这个解决方案中,单独把邮件附件拿出来做处理了。在有些处理方式中,会把附件的内容和正文直接拼接,用上面介绍的方式进行编码,但这样处理不够精细,可能有如下问题而导致最后模型效果不佳:

  • 附件文本可能非常大,包含许多多余的内容,这些内容可能会淹没电子邮件正文中更重要的微妙细节。
  • 对于意图检测而言,重要的是文档的性质或类型,而不是详细的内容。

基于上述考虑,我们单独训练附件分类器来生成附件的密集向量表示。可能我们的附件包含不规则的 PDF 或者图片,我们可能要考虑用 OCR 引擎(例如 Tesseract)进行识别和提取部分内容,

假设我们的附件数量为N,DC 是经过训练的附件分类器。DC对每个附件预测处理输出一个向量(文档类型分布概率向量)。 由于最终的附件向量表示需要具有固定长度(但是N是不确定的),我们在附件维度上使用最大池化得到统一长度的表征。

以下是为给定电子邮件生成附件向量化表征的代码示例:

# DC是文档分类器
distributions = []
for attachment in attachments:
  current_distribution = DC(attachent)
  distributions.append(current_distribution)
np_distributions = np.array(distributions) #维度为(X,N)的附件向量组
attachments_feat_vec = np.max(np_distributions, axis=0) #最大池化
           

③ 搭建多数据源混合网络

下面部分使用到了TensorFlow工具库,ShowMeAI 制作了快捷即查即用的工具速查表手册,大家可以在下述位置获取:
  • TensorFlow速查手册

在上述核心输入处理和表征后,我们就可以使用 Tensorflow 构建一个多分支神经网络了。参考代码如下:

def build_hybrid_mo_model(bert_input_size, att_features_size, nb_classes):
    emb_input = tf.keras.Input(shape=(bert_input_size,), name="text_embeddings_input")
    att_classif_input = tf.keras.Input(shape=(att_features_size,), name="attachments_repr_input")


    DenseEmb1 = tf.keras.layers.Dense(units=256, activation='relu')(emb_input)
    compressed_embs = tf.keras.layers.Dense(units=32, activation='relu', name="compression_layer")(DenseEmb1)
    combined_features = tf.keras.layers.concatenate([compressed_embs,att_classif_input], axis=1)


    Dense1= tf.keras.layers.Dense(units=128)(combined_features)
    Dense2= tf.keras.layers.Dense(units=128)(Dense1)


    out1 = tf.keras.layers.Dense(units=nb_classes, name="intention_category_output")(Dense2)
    out2 = tf.keras.layers.Dense(units=1, name="information_request_output")(Dense2)


    model = tf.keras.Model(inputs=[emb_input,att_classif_input], outputs=[out1, out2])
    losses = {
        "intention_category_output" : tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        "information_request_output" : tf.keras.losses.BinaryCrossentropy(from_logits=True)}


    model.compile(optimizer="adam",loss= losses,  metrics=["accuracy"])


    print (model.summary())
    
    return model
           

构建完模型之后,可以通过

tf.keras.utils.plot_model

打印出模型架构,如下图所示:

超精准!AI 结合邮件内容与附件的意图理解与分类!⛵💡 场景 & 背景💡 实现方案💡 总结参考资料

上图的模型架构,和我们在『架构初览』板块的设计完全一致*,*它包含更多的细节信息:

  • 电子邮件正文文本嵌入,维度为768维
  • 附件文件包含8种类型,向量化表征为8维

模型的输出部分包含:

  • 7个主要意图
  • 1个次要意图

④ 训练&评估

作为测试,作者在银行业务相关电子邮件的专有数据集上训练了模型,具体情况如下:

  • 数据集由 1100 封电子邮件组成,包含 7 个主要意图,但分布不均。
  • 构建的神经网络包含 22.7w 个参数( 具体细节如上图,大家也可以通过model.summary()输出模型信息)。
  • 以batch size大小为32训练了 50 个 epoch
  • 实际没有使用到GPU,在16核的CPU上做的训练(但大家使用GPU一定有更快的速度)
  • 主要意图分类任务上达到了 87% 的加权 F1 分数平均值。如果不使用附件,加权 F1 分数平均值降低10%。(可见2部分信息都非常重要)

💡 总结

参考资料

  • 📘 AI实战 | 基于NLP文档嵌入技术的基础文本搜索引擎构建:https://showmeai.tech/article-detail/321
  • 📘 TensorFlow 速查手册:https://www.showmeai.tech/article-detail/109
  • 📘 深度学习教程:吴恩达专项课程 · 全套笔记解读:https://www.showmeai.tech/tutorials/35
  • 📘 深度学习教程 | 自然语言处理与词嵌入:https://www.showmeai.tech/article-detail/226
  • 📘 NLP教程 | 斯坦福CS224n · 课程带学与全套笔记解读:https://www.showmeai.tech/tutorials/36
  • 📘 NLP教程(1) - 词向量、SVD分解与Word2Vec:https://www.showmeai.tech/article-detail/230
  • 📘 NLP教程(2) - GloVe及词向量的训练与评估:https://www.showmeai.tech/article-detail/232
  • 📘 TF-iDF:https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
  • 📘 PCA:https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
  • 📘 Doc2Vec:https://radimrehurek.com/gensim/models/doc2vec.html
  • 📘 BERT:[https://huggingface.co/docs/transformers/model_doc/bert](https://huggingface.co/docs/transformers/model_doc/bert)
  • 📘 HuggingFace:https://huggingface.co/

继续阅读