💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
算术优化算法 (AOA),利用数学中主要算术运算符的分布行为,包括(乘法 (M)、除法 (D)、减法 (S) 和加法 (A))。AOA经过数学建模和实施,以优化各种问题。
📚2 运行结果
🎉3 参考文献
function [Best_FF,Best_P,Conv_curve]=AOA(N,M_Iter,LB,UB,Dim,F_obj)
display('AOA Working');
%Two variables to keep the positions and the fitness value of the best-obtained solutionBest_P=zeros(1,Dim);
Best_FF=inf;
Conv_curve=zeros(1,M_Iter);%Initialize the positions of solution
X=initialization(N,Dim,UB,LB);
Xnew=X;
Ffun=zeros(1,size(X,1));% (fitness values)
Ffun_new=zeros(1,size(Xnew,1));% (fitness values)MOP_Max=1;
MOP_Min=0.2;
C_Iter=1;
Alpha=5;
Mu=0.499; for i=1:size(X,1)
Ffun(1,i)=F_obj(X(i,:)); %Calculate the fitness values of solutions
if Ffun(1,i)<Best_FF
Best_FF=Ffun(1,i);
Best_P=X(i,:);
end
end
while C_Iter<M_Iter+1 %Main loop
MOP=1-((C_Iter)^(1/Alpha)/(M_Iter)^(1/Alpha)); % Probability Ratio
MOA=MOP_Min+C_Iter*((MOP_Max-MOP_Min)/M_Iter); %Accelerated function
%Update the Position of solutions
for i=1:size(X,1) % if each of the UB and LB has a just value
for j=1:size(X,2)
r1=rand();
if (size(LB,2)==1)
if r1<MOA
r2=rand();
if r2>0.5
Xnew(i,j)=Best_P(1,j)/(MOP+eps)*((UB-LB)*Mu+LB);
else
Xnew(i,j)=Best_P(1,j)*MOP*((UB-LB)*Mu+LB);
end
else
r3=rand();
if r3>0.5
Xnew(i,j)=Best_P(1,j)-MOP*((UB-LB)*Mu+LB);
else
Xnew(i,j)=Best_P(1,j)+MOP*((UB-LB)*Mu+LB);
end
end
end
if (size(LB,2)~=1) % if each of the UB and LB has more than one value
r1=rand();
if r1<MOA
r2=rand();
if r2>0.5
Xnew(i,j)=Best_P(1,j)/(MOP+eps)*((UB(j)-LB(j))*Mu+LB(j));
else
Xnew(i,j)=Best_P(1,j)*MOP*((UB(j)-LB(j))*Mu+LB(j));
end
else
r3=rand();
if r3>0.5
Xnew(i,j)=Best_P(1,j)-MOP*((UB(j)-LB(j))*Mu+LB(j));
else
Xnew(i,j)=Best_P(1,j)+MOP*((UB(j)-LB(j))*Mu+LB(j));
end
end
end
end
Flag_UB=Xnew(i,:)>UB; % check if they exceed (up) the boundaries
Flag_LB=Xnew(i,:)<LB; % check if they exceed (down) the boundaries
Xnew(i,:)=(Xnew(i,:).*(~(Flag_UB+Flag_LB)))+UB.*Flag_UB+LB.*Flag_LB;
Ffun_new(1,i)=F_obj(Xnew(i,:)); % calculate Fitness function
if Ffun_new(1,i)<Ffun(1,i)
X(i,:)=Xnew(i,:);
Ffun(1,i)=Ffun_new(1,i);
end
if Ffun(1,i)<Best_FF
Best_FF=Ffun(1,i);
Best_P=X(i,:);
end
end
%Update the convergence curve
Conv_curve(C_Iter)=Best_FF;
%Print the best solution details after every 50 iterations
if mod(C_Iter,50)==0
display(['At iteration ', num2str(C_Iter), ' the best solution fitness is ', num2str(Best_FF)]);
end
C_Iter=C_Iter+1; % incremental iteration
end