诚然,不言暴力法。动态规划和中心扩展法较为合适。
class Solution {
public String longestPalindrome(String s) {
int n = s.length();
String res = "";
boolean[][] dp = new boolean[n][n];
for (int i =n; i>=0; i--) {
for (int j = i; j < n; j++) {
dp[i][j] = s.charAt(i) == s.charAt(j) && (j - i < 3 || dp[i + 1][j - 1]);
if (dp[i][j] && (j - i + 1 > res.length())) {
res = s.substring(i, j + 1);
}
}
}
return res;
}
}
中心扩展法(分奇数和偶数两种情况)
class Solution{
public String longestPalindrome(String s) {
if (s == null || s.length() < 1) return "";
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L--;
R++;
}
return R - L - 1;
}
}
暴力法就不说了。
class Solution {
public int countSubstrings(String s) {
int count=0;
for(int i=0;i<s.length();i++){
for(int j=i+1;j<=s.length();j++)
if(palindromic(s.substring(i,j)))
count++;
}
return count;
}
public boolean palindromic(String sub){
int l=0,r=sub.length()-1;
while(l<r){
if(sub.charAt(l)!=sub.charAt(r))
return false;
l++;
r--;
}
return true;
}
}
对于回文字符,中心扩展法很常用。
class Solution {
int count;
public int countSubstrings(String s) {
if(s==null || s.length()==0) return 0;
count = 0;
for(int i=0;i<s.length();i++){
extendpalindrome(s,i,i);
extendpalindrome(s,i, i+1);
}
return count;
}
public void extendpalindrome(String s, int i, int j){
while(i>=0 && j<s.length() && s.charAt(i)==s.charAt(j)){
count++;
i--;
j++;
}
}
}