天天看点

elasticsearch aggregations_elasticsearch的字符串动态映射

欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:原创文章分类汇总及配套源码,涉及Java、Docker、K8S、Devops等

映射用来定义文档及其字段如何被存储和索引,文档写入es时,es可根据写入内容的类型自动识别,这种机制就是动态映射(Dynamic field mapping),本文关注的是写入内容为字符串时,该内容被识别的字段类型;

环境信息

  1. 操作系统:Ubuntu 18.04.2 LTS
  2. elasticsearch:6.7.1
  3. kibana:6.7.1

官网解释

来自官网的解释,如下图,地址是:https://www.elastic.co/guide/en/elasticsearch/reference/current/dynamic-field-mapping.html

elasticsearch aggregations_elasticsearch的字符串动态映射

官网的解释为:

  1. 如果是日期类型,就映射为date;
  2. 如果是数字,就映射为double或者long;
  3. 否则就是text,并且还会带上keyword子类型;

映射为text好理解,但是带上keyword子类型怎么理解呢?应该是达到静态绑定的映射参数fields效果,让该字段有两种索引方式,这样可以用text类型做全文检索,再用keyword类型做聚合和排序;

接下来实战验证:

创建文档

  1. 在Kibana上执行以下命令,创建索引、类型、一个文档:
PUT book/es/101{"title":"Elasticsearch IN ACTION","language":"java","author":"Radu Gheorghe","price":58.80,"publish_time":"2018-10-01","description":"本书主要展示如何使用Elasticsearch构建可扩展的搜索应用程序。"}
           
  1. 再创建一条:
PUT book/es/102{"title":"ELK Stack权威指南 ","language":"java","author":"拉斐尔·酷奇","price":62.40,"publish_time":"2017-05-01","description":"本书涵盖了Elasticsearch的许多中高级功能。"}
           

检查动态映射结果

执行命令GET book/_mapping查看动态映射结果,字符串动态映射后,字段类型为text,但是都有了fields参数,里面是keyword的子类型:

{  "book" : {    "mappings" : {      "es" : {        "properties" : {          "author" : {            "type" : "text",            "fields" : {              "keyword" : {                "type" : "keyword",                "ignore_above" : 256              }            }          },          "description" : {            "type" : "text",            "fields" : {              "keyword" : {                "type" : "keyword",                "ignore_above" : 256              }            }          },          "language" : {            "type" : "text",            "fields" : {              "keyword" : {                "type" : "keyword",                "ignore_above" : 256              }            }          },          "price" : {            "type" : "float"          },          "publish_time" : {            "type" : "date"          },          "title" : {            "type" : "text",            "fields" : {              "keyword" : {                "type" : "keyword",                "ignore_above" : 256              }            }          }        }      }    }  }}
           

验证检索

  1. 执行以下检索命令验证检索:
GET book/_search{  "query": {    "match": {"title":"Elasticsearch"}  }}
           

第一条记录都可以搜索到,证明description字段已经被分词和索引了;

2. title字段还有一种索引方式keyword,也来试试,查keyword是要用完整内容做查询条件的,如下:

GET book/_search{  "query": {    "term": {"title":"Elasticsearch IN ACTION"}  }}
           

得到的结果如下,没有记录:

{  "took" : 0,  "timed_out" : false,  "_shards" : {    "total" : 5,    "successful" : 5,    "skipped" : 0,    "failed" : 0  },  "hits" : {    "total" : 0,    "max_score" : null,    "hits" : [ ]  }}
           

这是怎么回事呢?对于这种sub-field的查询,不能直接使用title,而是要用title.keyword,改成如下请求:

GET book/_search{  "query": {    "term": {"title.keyword":"Elasticsearch IN ACTION"}  }}
           

这次顺利查到:

{  "took" : 0,  "timed_out" : false,  "_shards" : {    "total" : 5,    "successful" : 5,    "skipped" : 0,    "failed" : 0  },  "hits" : {    "total" : 1,    "max_score" : 0.2876821,    "hits" : [      {        "_index" : "book",        "_type" : "es",        "_id" : "101",        "_score" : 0.2876821,        "_source" : {          "title" : "Elasticsearch IN ACTION",          "language" : "java",          "author" : "Radu Gheorghe",          "price" : 58.8,          "publish_time" : "2018-10-01",          "description" : "本书主要展示如何使用Elasticsearch构建可扩展的搜索应用程序。"        }      }    ]  }}
           

验证聚合

执行以下命令,以language字段进行分组,统计每个分组的文档数:

GET book/_search{  "aggs": {    "per_count": {      "terms":{        "field":"language.keyword"      }          }  }}
           

得到结果如下,可以成功统计language字段为java的文档数量为2,可见动态映射给language设定的keyword类型能够直接用于聚合(text类型不能直接用于聚合,会返回status=400错误,修改参数后可以将text类用于聚合,但是会消耗更多内存资源):

{  "took" : 2,  "timed_out" : false,  "_shards" : {    "total" : 5,    "successful" : 5,    "skipped" : 0,    "failed" : 0  },  "hits" : {    "total" : 2,    "max_score" : 1.0,    "hits" : [      {        "_index" : "book",        "_type" : "es",        "_id" : "101",        "_score" : 1.0,        "_source" : {          "title" : "Elasticsearch IN ACTION",          "language" : "java",          "author" : "Radu Gheorghe",          "price" : 58.8,          "publish_time" : "2018-10-01",          "description" : "本书主要展示如何使用Elasticsearch构建可扩展的搜索应用程序。"        }      },      {        "_index" : "book",        "_type" : "es",        "_id" : "102",        "_score" : 1.0,        "_source" : {          "title" : "ELK Stack权威指南 ",          "language" : "java",          "author" : "拉斐尔·酷奇",          "price" : 62.4,          "publish_time" : "2017-05-01",          "description" : "本书涵盖了Elasticsearch的许多中高级功能。"        }      }    ]  },  "aggregations" : {    "per_count" : {      "doc_count_error_upper_bound" : 0,      "sum_other_doc_count" : 0,      "buckets" : [        {          "key" : "java",          "doc_count" : 2        }      ]    }  }}
           

以上就是字符串在动态映射逻辑中的结果和验证,您使用动态映射的过程中,如果在词项查询和聚合等操作中遇到疑惑,希望本文能提供些参考;