天天看点

java层次聚类_2.交通聚类 -层次聚类(agnes)Java实现

1.项目背景 在做交通路线分析的时候,客户需要找出车辆的行车规律,我们将车辆每天的行车路线当做一个数据样本,总共有365天或是更多,从这些数据中通过聚类来获得行车路线规律统计分析。

我首先想到是K-means算法,不过它的算法思想是任选K个中心点,然后不停的迭代,在迭代的过程中需要不停的更新中心点。在我们着这个项目中,此方案不能解决,因为我们是通过编辑距离来计算两条路线的相似度。可以参考(1.交通聚类:编辑距离 (Levenshtein距离)Java实现) 这篇文章了解一下编辑距离。当我们第一步选出k个中心点后,并且两两计算编辑距离,然后再重新选择中心点,这时问题出来了,我们得到了编辑距离的均值,是数字化的。如果在根据这个均值两两比较编辑距离就无法实现了。故此方案废弃。

2.层次聚类概述(Hierarchical Clustering) 基于层次的聚类方法(系统聚类方法):对给定的数据集进行层次分解,直到某种条件满足为止。

1.凝聚的层次聚类:自底向上,首先将每个对象作为一个族开始,每一步合并两个最近的簇,直到满足簇的数目。如AGNES算法。每一项自成一类;迭代,将最近的两类合并为一类。

2.分裂的层次聚类: 自顶向下,从包含所有对象的一个簇开始,每一步分裂一个簇,直到簇的数目。如DLANA算法。将所有项看做一类;找出最不相似的项分裂出去成为两类。 相信大家读完上边的陈述已经明白是怎么回事了。下边是代码,供以后用到的朋友学习研究。

3.代码: package agenes;

import java.util.ArrayList;

import java.util.List;

public class Cluster {

private List dataPoints = new ArrayList(); // 类簇中的样本点

private String clusterName;

public List getDataPoints() {

return dataPoints;

}

public void setDataPoints(List dataPoints) {

this.dataPoints = dataPoints;

}

public String getClusterName() {

return clusterName;

}

public void setClusterName(String clusterName) {

this.clusterName = clusterName;

}

}

package agenes;

import java.util.ArrayList;

import java.util.List;

public class ClusterAnalysis {

public List startAnalysis(List dataPoints,int ClusterNum){

List finalClusters=new ArrayList();

List originalClusters=initialCluster(dataPoints);

finalClusters=originalClusters;

while(finalClusters.size()>ClusterNum){

double min=Double.MAX_VALUE;

int mergeIndexA=0;

int mergeIndexB=0;

for(int i=0;i

for(int j=0;j

if(i!=j){

Cluster clusterA=finalClusters.get(i);

Cluster clusterB=finalClusters.get(j);

List dataPointsA=clusterA.getDataPoints();

List dataPointsB=clusterB.getDataPoints();

for(int m=0;m

for(int n=0;n

double tempDis=getDistance(dataPointsA.get(m),dataPointsB.get(n));

if(tempDis

min=tempDis;

mergeIndexA=i;

mergeIndexB=j;

}

}

}

}

} //end for j

}// end for i

//合并cluster[mergeIndexA]和cluster[mergeIndexB]

finalClusters=mergeCluster(finalClusters,mergeIndexA,mergeIndexB);

}//end while

return finalClusters;

}

private List mergeCluster(List clusters,int mergeIndexA,int mergeIndexB){

if (mergeIndexA != mergeIndexB) {

// 将cluster[mergeIndexB]中的DataPoint加入到 cluster[mergeIndexA]

Cluster clusterA = clusters.get(mergeIndexA);

Cluster clusterB = clusters.get(mergeIndexB);

List dpA = clusterA.getDataPoints();

List dpB = clusterB.getDataPoints();

for (DataPoint dp : dpB) {

DataPoint tempDp = new DataPoint();

// tempDp.setDataPointName(dp.getDataPointName());

// tempDp.setDimensioin(dp.getDimensioin());

// tempDp.setCluster(clusterA);

tempDp = dp;

tempDp.setCluster(clusterA);

dpA.add(tempDp);

}

clusterA.setDataPoints(dpA);

// List clusters中移除cluster[mergeIndexB]

clusters.remove(mergeIndexB);

}

return clusters;

}

// 初始化类簇

private List initialCluster(List dataPoints){

List originalClusters=new ArrayList();

for(int i=0;i

DataPoint tempDataPoint=dataPoints.get(i);

List tempDataPoints=new ArrayList();

tempDataPoints.add(tempDataPoint);

Cluster tempCluster=new Cluster();

tempCluster.setClusterName("Cluster "+String.valueOf(i));

tempCluster.setDataPoints(tempDataPoints);

tempDataPoint.setCluster(tempCluster);

originalClusters.add(tempCluster);

}

return originalClusters;

}

//计算两个样本点之间的欧几里得距离

private double getDistance(DataPoint dpA, DataPoint dpB){

double distance=0;

double[] dimA = dpA.getDimensioin();

double[] dimB = dpB.getDimensioin();

if (dimA.length == dimB.length) {

for (int i = 0; i < dimA.length; i++) {

double temp=Math.pow((dimA[i]-dimB[i]),2);

distance=distance+temp;

}

distance=Math.pow(distance, 0.5);

}

return distance;

}

public static void main(String[] args){

ArrayList dpoints = new ArrayList();

double[] a={2,3};

double[] b={2,4};

double[] c={1,4};

double[] d={1,3};

double[] e={2,2};

double[] f={3,2};

double[] g={8,7};

double[] h={8,6};

double[] i={7,7};

double[] j={7,6};

double[] k={8,5};

// double[] l={100,2};//孤立点

double[] m={8,20};

double[] n={8,19};

double[] o={7,18};

double[] p={7,17};

double[] q={8,20};

dpoints.add(new DataPoint(a,"a"));

dpoints.add(new DataPoint(b,"b"));

dpoints.add(new DataPoint(c,"c"));

dpoints.add(new DataPoint(d,"d"));

dpoints.add(new DataPoint(e,"e"));

dpoints.add(new DataPoint(f,"f"));

dpoints.add(new DataPoint(g,"g"));

dpoints.add(new DataPoint(h,"h"));

dpoints.add(new DataPoint(i,"i"));

dpoints.add(new DataPoint(j,"j"));

dpoints.add(new DataPoint(k,"k"));

// dataPoints.add(new DataPoint(l,"l"));

// dpoints.add(new DataPoint(l,"l"));

dpoints.add(new DataPoint(m,"m"));

dpoints.add(new DataPoint(n,"n"));

dpoints.add(new DataPoint(o,"o"));

dpoints.add(new DataPoint(p,"p"));

dpoints.add(new DataPoint(q,"q"));

int clusterNum=3; //类簇数

ClusterAnalysis ca=new ClusterAnalysis();

List clusters=ca.startAnalysis(dpoints, clusterNum);

for(Cluster cl:clusters){

System.out.println("------"+cl.getClusterName()+"------");

List tempDps=cl.getDataPoints();

for(DataPoint tempdp:tempDps){

System.out.println(tempdp.getDataPointName());

}

}

}

}

package agenes;

public class DataPoint {

String dataPointName; // 样本点名

Cluster cluster; // 样本点所属类簇

private double dimensioin[]; // 样本点的维度

public DataPoint() {

}

public DataPoint(double[] dimensioin, String dataPointName) {

this.dataPointName = dataPointName;

this.dimensioin = dimensioin;

}

public double[] getDimensioin() {

return dimensioin;

}

public void setDimensioin(double[] dimensioin) {

this.dimensioin = dimensioin;

}

public Cluster getCluster() {

return cluster;

}

public void setCluster(Cluster cluster) {

this.cluster = cluster;

}

public String getDataPointName() {

return dataPointName;

}

public void setDataPointName(String dataPointName) {

this.dataPointName = dataPointName;

}

}