关于滑窗中优化变量的理解:
Ps 、Vs 、Rs 代表的意义可能很多人还没有清楚,这个强调多少次都不为过!这个值是由IMU机械编排出来的,代表的是 b(k) 坐标系相对与世界坐标系的位置、速度、姿态,而这个k是对应的相机帧,因为相机和IMU是固连的 。而相机和IMU通过Rb_c进行转换的,也就是我们自动外参标定的部分!
组织特征点的方式:
关键帧选取规则
1、当前帧相对最近的关键帧的特征平均视差大于一个阈值就为关键帧(因为视差可以根据平移和旋转共同得到,而纯旋转则导致不能三角化成功,所以这一步需要IMU预积分进行补偿)
2、当前帧跟踪到的特征点数量小于阈值视为关键帧;
求取的视差是对应两帧中特征点的距离。
bool FeatureManager::addFeatureCheckParallax(int frame_count, const map<int, vector<pair<int, Eigen::Matrix<double, 7, 1>>>> &image, double td)
{
ROS_DEBUG("input feature: %d", (int)image.size());
ROS_DEBUG("num of feature: %d", getFeatureCount());
//所有特征点视差总和
double parallax_sum = 0;
// 满足某些条件的特征点个数
int parallax_num = 0;
//被跟踪点的个数
last_track_num = 0;
for (auto &id_pts : image)
{
//特征点管理器,存储特征点格式:首先按照特征点ID,一个一个存储,每个ID会包含其在不同帧上的位置
FeaturePerFrame f_per_fra(id_pts.second[0].second, td);
int feature_id = id_pts.first;
// find_if 函数,找到一个interator使第三个仿函数参数为真
auto it = find_if(feature.begin(), feature.end(), [feature_id](const FeaturePerId &it)
{
return it.feature_id == feature_id;
} );
if (it == feature.end())
{
//如果没有找到此ID,就在管理器中增加此特征点
feature.push_back(FeaturePerId(feature_id, frame_count));
feature.back().feature_per_frame.push_back(f_per_fra);
}
else if (it->feature_id == feature_id)
{
//如果找到了相同ID特征点,就在其FeaturePerFrame内增加此特征点在此帧的位置以及其他信息,然后增加last_track_num,说明此帧有多少个相同特征点被跟踪到
it->feature_per_frame.push_back(f_per_fra);
last_track_num++;
}
}
if (frame_count < 2 || last_track_num < 20)
return true;
for (auto &it_per_id : feature)
{
//计算能被当前帧和其前两帧共同看到的特征点视差
if (it_per_id.start_frame <= frame_count - 2 &&
it_per_id.start_frame + int(it_per_id.feature_per_frame.size()) - 1 >= frame_count - 1)
{
parallax_sum += compensatedParallax2(it_per_id, frame_count);
parallax_num++;
}
}
if (parallax_num == 0)
{
return true;
}
else
{
ROS_DEBUG("parallax_sum: %lf, parallax_num: %d", parallax_sum, parallax_num);
ROS_DEBUG("current parallax: %lf", parallax_sum / parallax_num * FOCAL_LENGTH);
return parallax_sum / parallax_num >= MIN_PARALLAX;
}
}
在这里插入double FeatureManager::compensatedParallax2(const FeaturePerId &it_per_id, int frame_count)
{
//check the second last frame is keyframe or not
//parallax betwwen seconde last frame and third last frame
const FeaturePerFrame &frame_i = it_per_id.feature_per_frame[frame_count - 2 - it_per_id.start_frame];
const FeaturePerFrame &frame_j = it_per_id.feature_per_frame[frame_count - 1 - it_per_id.start_frame];//这里怎么能确保feature_per_frame[frame_count - 1 - it_per_id.start_frame]总是存在的呢
double ans = 0;
Vector3d p_j = frame_j.point;// 3D路标点(倒数第二帧j)
double u_j = p_j(0);
double v_j = p_j(1);
Vector3d p_i = frame_i.point;// 3D路标点(倒数第三帧i)
Vector3d p_i_comp;
//int r_i = frame_count - 2;
//int r_j = frame_count - 1;
//p_i_comp = ric[camera_id_j].transpose() * Rs[r_j].transpose() * Rs[r_i] * ric[camera_id_i] * p_i;
p_i_comp = p_i;
double dep_i = p_i(2);
double u_i = p_i(0) / dep_i;
double v_i = p_i(1) / dep_i;
double du = u_i - u_j, dv = v_i - v_j;
//没有惯导补偿,这一部分重复了
double dep_i_comp = p_i_comp(2);
double u_i_comp = p_i_comp(0) / dep_i_comp;
double v_i_comp = p_i_comp(1) / dep_i_comp;
double du_comp = u_i_comp - u_j, dv_comp = v_i_comp - v_j;
ans = max(ans, sqrt(min(du * du + dv * dv, du_comp * du_comp + dv_comp * dv_comp)));
return ans;
}代码片
我的疑问:怎么知道FeaturePerId中的FeaturePerFrame的对应索引都存在呢