天天看点

python艺术分形数_Python分形盒计数-分形维数

我有一些图像,我想计算Minkowski/box count dimension来确定图像中的分形特征。下面是两个示例图像:

10.jpg:

python艺术分形数_Python分形盒计数-分形维数

24.jpg:

python艺术分形数_Python分形盒计数-分形维数

我使用以下代码计算分形维数:import numpy as np

import scipy

def rgb2gray(rgb):

r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]

gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

return gray

def fractal_dimension(Z, threshold=0.9):

# Only for 2d image

assert(len(Z.shape) == 2)

# From https://github.com/rougier/numpy-100 (#87)

def boxcount(Z, k):

S = np.add.reduceat(

np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),

np.arange(0, Z.shape[1], k), axis=1)

# We count non-empty (0) and non-full boxes (k*k)

return len(np.where((S > 0) & (S < k*k))[0])

# Transform Z into a binary array

Z = (Z < threshold)

# Minimal dimension of image

p = min(Z.shape)

# Greatest power of 2 less than or equal to p

n = 2**np.floor(np.log(p)/np.log(2))

# Extract the exponent

n = int(np.log(n)/np.log(2))

# Build successive box sizes (from 2**n down to 2**1)

sizes = 2**np.arange(n, 1, -1)

# Actual box counting with decreasing size

counts = []

for size in sizes:

counts.append(boxcount(Z, size))

# Fit the successive log(sizes) with log (counts)

coeffs = np.polyfit(np.log(sizes), np.log(counts), 1)

return -coeffs[0]

I = rgb2gray(scipy.misc.imread("24.jpg"))

print("Minkowski–Bouligand dimension (computed): ", fractal_dimension(I))

从我读过的文献来看,有人认为自然场景(如24.jpg)在本质上更具分形性,因此应该具有更大的分形维数值

它给我的结果与文献所暗示的相反:10.jpg:1.259

24.jpg:1.073

我希望自然图像的分形维数大于城市图像的分形维数

我计算代码中的值是否不正确?或者我只是不正确地解释结果?