4.3 动态sql
准确的说,只要mybatis的的crud语句中包含了、等标签或者${}之后,就已经算是动态sql了,所以只要在mybatis加载mapper文件期间被解析为非StaticSqlSource,就会被当做动态sql处理,在执行selectXXX或者update/insert/delete期间,就会调用对应的SqlNode接口和TextSqlNode.isDynamic()处理各自的标签以及${},并最终将每个sql片段处理到StaticTextSqlNode并生成最终的参数化静态SQL语句为止。所以,可以说,在绝大部分非PK查询的情况下,我们都是在使用动态SQL。
4.4 存储过程与函数调用实现
如果MappedStatement.StatementType类型为CALLABLE,在Executor.doQuery方法中创建语句处理器的时候,就会返回CallableStatementHandler实例,随后在调用语句处理器的初始化语句和设置参数 方法时,调用jdbc对应存储过程的prepareCall方法,如下:
@Override
protected Statement instantiateStatement(Connection connection) throws SQLException {
String sql = boundSql.getSql();
if (mappedStatement.getResultSetType() != null) {
return connection.prepareCall(sql, mappedStatement.getResultSetType().getValue(), ResultSet.CONCUR_READ_ONLY);
} else {
return connection.prepareCall(sql);
}
}
@Override
public void parameterize(Statement statement) throws SQLException {
registerOutputParameters((CallableStatement) statement);
parameterHandler.setParameters((CallableStatement) statement);
}
private void registerOutputParameters(CallableStatement cs) throws SQLException {
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
for (int i = 0, n = parameterMappings.size(); i < n; i++) {
ParameterMapping parameterMapping = parameterMappings.get(i);
if (parameterMapping.getMode() == ParameterMode.OUT || parameterMapping.getMode() == ParameterMode.INOUT) {
if (null == parameterMapping.getJdbcType()) {
throw new ExecutorException("The JDBC Type must be specified for output parameter. Parameter: " + parameterMapping.getProperty());
} else {
if (parameterMapping.getNumericScale() != null && (parameterMapping.getJdbcType() == JdbcType.NUMERIC || parameterMapping.getJdbcType() == JdbcType.DECIMAL)) {
cs.registerOutParameter(i + 1, parameterMapping.getJdbcType().TYPE_CODE, parameterMapping.getNumericScale());
} else {
if (parameterMapping.getJdbcTypeName() == null) {
cs.registerOutParameter(i + 1, parameterMapping.getJdbcType().TYPE_CODE);
} else {
cs.registerOutParameter(i + 1, parameterMapping.getJdbcType().TYPE_CODE, parameterMapping.getJdbcTypeName());
}
}
}
}
}
}
4.5 mybatis事务实现
mybatis的事务管理模式分为两种,自动提交和手工提交,DefaultSqlSessionFactory的openSession中重载中,提供了一个参数用于控制是否自动提交事务,该参数最终被传递给 java.sql.Connection.setAutoCommit()方法用于控制是否自动提交事务(默认情况下,连接是自动提交的),如下所示:
private SqlSession openSessionFromDataSource(ExecutorType execType, TransactionIsolationLevel level, boolean autoCommit) {
Transaction tx = null;
try {
final Environment environment = configuration.getEnvironment();
final TransactionFactory transactionFactory = getTransactionFactoryFromEnvironment(environment);
tx = transactionFactory.newTransaction(environment.getDataSource(), level, autoCommit);
final Executor executor = configuration.newExecutor(tx, execType);
return new DefaultSqlSession(configuration, executor, autoCommit);
} catch (Exception e) {
closeTransaction(tx); // may have fetched a connection so lets call close()
throw ExceptionFactory.wrapException("Error opening session. Cause: " + e, e);
} finally {
ErrorContext.instance().reset();
}
}
如上所示,返回的事务传递给了执行器,因为执行器是在事务上下文中执行,所以对于自动提交模式,实际上mybatis不需要去关心。只有非自动管理模式,mybatis才需要关心事务。对于非自动提交模式,通过sqlSession.commit()或sqlSession.rollback()发起,在进行提交或者回滚的时候会调用isCommitOrRollbackRequired判断是否应该提交或者回滚事务,如下所示:
private boolean isCommitOrRollbackRequired(boolean force) {
return (!autoCommit && dirty) || force;
}
只有非自动提交模式且执行过DML操作或者设置强制提交才会认为应该进行事务提交或者回滚操作。
对于不同的执行器,在提交和回滚执行的逻辑不一样,因为每个执行器在一级、二级、语句缓存上的差异:
- 对于简单执行器,除了清空一级缓存外,什么都不做;
- 对于REUSE执行器,关闭每个缓存的Statement以释放服务器端语句处理器,然后清空缓存的语句;
- 对于批量处理器,则执行每个批处理语句的executeBatch()方法以便真正执行语句,然后关闭Statement;
上述逻辑执行完成后,会执行提交/回滚操作。对于缓存执行器,在提交/回滚完成之后,会将TransactionCache中的entriesMissedInCache和entriesToAddOnCommit列表分别移动到语句对应的二级缓存中或清空掉。
4.6 缓存
只要实现org.apache.ibatis.cache.Cache接口的任何类都可以当做缓存,Cache接口很简单:
public interface Cache {
/**
* @return The identifier of this cache
*/
String getId();
/**
* @param key Can be any object but usually it is a {@link CacheKey}
* @param value The result of a select.
*/
void putObject(Object key, Object value);
/**
* @param key The key
* @return The object stored in the cache.
*/
Object getObject(Object key);
/**
* As of 3.3.0 this method is only called during a rollback
* for any previous value that was missing in the cache.
* This lets any blocking cache to release the lock that
* may have previously put on the key.
* A blocking cache puts a lock when a value is null
* and releases it when the value is back again.
* This way other threads will wait for the value to be
* available instead of hitting the database.
*
*
* @param key The key
* @return Not used
*/
Object removeObject(Object key);
/**
* Clears this cache instance
*/
void clear();
/**
* Optional. This method is not called by the core.
*
* @return The number of elements stored in the cache (not its capacity).
*/
int getSize();
/**
* Optional. As of 3.2.6 this method is no longer called by the core.
*
* Any locking needed by the cache must be provided internally by the cache provider.
*
* @return A ReadWriteLock
*/
ReadWriteLock getReadWriteLock();
}
mybatis提供了基本实现org.apache.ibatis.cache.impl.PerpetualCache,内部采用原始HashMap实现。第二个需要知道的方面是mybatis有一级缓存和二级缓存。一级缓存是SqlSession级别的缓存,不同SqlSession之间的缓存数据区域(HashMap)是互相不影响,MyBatis默认支持一级缓存,不需要任何的配置,默认情况下(一级缓存的有效范围可通过参数localCacheScope参数修改,取值为SESSION或者STATEMENT),在一个SqlSession的查询期间,只要没有发生commit/rollback或者调用close()方法,那么mybatis就会先根据当前执行语句的CacheKey到一级缓存中查找,如果找到了就直接返回,不到数据库中执行。其实现在代码BaseExecutor.query()中,如下所示:
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
if (queryStack == 0 && ms.isFlushCacheRequired()) {
clearLocalCache();
}
List<E> list;
try {
queryStack++;
// 如果在一级缓存中就直接获取
==list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}==
} finally {
queryStack--;
}
if (queryStack == 0) {
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
// issue #601
deferredLoads.clear();
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
// issue #482
// 如果设置了一级缓存是STATEMENT级别而非默认的SESSION级别,一级缓存就去掉了
clearLocalCache();
}
}
return list;
}
二级缓存是mapper级别的缓存,多个SqlSession去操作同一个mapper的sql语句,多个SqlSession可以共用二级缓存,二级缓存是跨SqlSession。二级缓存默认不启用,需要通过在Mapper中明确设置cache,它的实现在CachingExecutor的query()方法中,如下所示:
@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
Cache cache = ms.getCache();
if (cache != null) {
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, parameterObject, boundSql);
@SuppressWarnings("unchecked")
// 如果二级缓存中找到了记录就直接返回,否则到DB查询后进行缓存
List<E> list = (List<E>) tcm.getObject(cache, key);
if (list == null) {
list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
tcm.putObject(cache, key, list); // issue #578 and #116
}
return list;
}
}
return delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
在mybatis的缓存实现中,缓存键CacheKey的格式为:cacheKey=ID + offset + limit + sql + parameterValues + environmentId。对于本书例子中的语句,其CacheKey为:
-1445574094:212285810:org.mybatis.internal.example.mapper.UserMapper.getUser:0:2147483647:select lfPartyId,partyName from LfParty where partyName = ? AND partyName like ? and lfPartyId in ( ?, ?):p2:p2:1:2:development
- 对于一级缓存,commit/rollback都会清空一级缓存。
- 对于二级缓存,DML操作或者显示设置语句层面的flushCache属性都会使得二级缓存失效。
在二级缓存容器的具体回收策略实现上,有下列几种:
- LRU – 最近最少使用的:移除最长时间不被使用的对象,也是默认的选项,其实现类是org.apache.ibatis.cache.decorators.LruCache。
- FIFO – 先进先出:按对象进入缓存的顺序来移除它们,其实现类是org.apache.ibatis.cache.decorators.FifoCache。
- SOFT – 软引用:移除基于垃圾回收器状态和软引用规则的对象,其实现类是org.apache.ibatis.cache.decorators.SoftCache。
- WEAK – 弱引用:更积极地移除基于垃圾收集器状态和弱引用规则的对象,其实现类是org.apache.ibatis.cache.decorators.WeakCache。
在缓存的设计上,Mybatis的所有Cache算法都是基于装饰器/Composite模式对PerpetualCache扩展增加功能。
对于模块化微服务系统来说,应该来说mybatis的一二级缓存对业务数据都不适合,尤其是对于OLTP系统来说,CRM/BI这些不算,如果要求数据非常精确的话,也不是特别合适。对这些要求数据准确的系统来说,尽可能只使用mybatis的ORM特性比较靠谱。但是有一部分数据如果前期没有很少的设计缓存的话,是很有价值的,比如说对于一些配置类数据比如数据字典、系统参数、业务配置项等很少变化的数据。
5 执行期主要类总结
mybatis在执行期间,主要有四大核心接口对象:
- 执行器Executor,执行器负责整个SQL执行过程的总体控制。
- 参数处理器ParameterHandler,参数处理器负责PreparedStatement入参的具体设置。
- 语句处理器StatementHandler,语句处理器负责和JDBC层具体交互,包括prepare语句,执行语句,以及调用ParameterHandler.parameterize()设置参数。
- 结果集处理器ResultSetHandler,结果处理器负责将JDBC查询结果映射到java对象。
5.1 执行器Executor
什么是执行器?所有我们在应用层通过sqlSession执行的各类selectXXX和增删改操作在做了动态sql和参数相关的封装处理后,都被委托给具体的执行器去执行,包括一、二级缓存的管理,事务的具体管理,Statement和具体JDBC层面优化的实现等等。所以执行器比较像是sqlSession下的各个策略工厂实现,用户通过配置决定使用哪个策略工厂。只不过执行器在一个mybatis配置下只有一个,这可能无法适应于所有的情况,尤其是哪些微服务做得不是特别好的中小型公司,因为这些系统通常混搭了OLTP和ETL功能。先来看下执行器接口的定义:
public interface Executor {
ResultHandler NO_RESULT_HANDLER = null;
int update(MappedStatement ms, Object parameter) throws SQLException;
<E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey cacheKey, BoundSql boundSql) throws SQLException;
<E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException;
<E> Cursor<E> queryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds) throws SQLException;
List<BatchResult> flushStatements() throws SQLException;
void commit(boolean required) throws SQLException;
void rollback(boolean required) throws SQLException;
CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql);
boolean isCached(MappedStatement ms, CacheKey key);
void clearLocalCache();
void deferLoad(MappedStatement ms, MetaObject resultObject, String property, CacheKey key, Class<?> targetType);
Transaction getTransaction();
void close(boolean forceRollback);
boolean isClosed();
void setExecutorWrapper(Executor executor);
}
mybatis提供了下列类型的执行器:
从上述可以看出,mybatis提供了两种类型的执行器,缓存执行器与非缓存执行器(使用哪个执行器是通过配置文件中settings下的属性defaultExecutorType控制的,默认是SIMPLE),是否使用缓存执行器则是通过执行cacheEnabled控制的,默认是true。
缓存执行器不是真正功能上独立的执行器,而是非缓存执行器的装饰器模式。
我们先来看非缓存执行器。非缓存执行器又分为三种,这三种类型的执行器都基于基础执行器BaseExecutor,基础执行器完成了大部分的公共功能,如下所示:
package org.apache.ibatis.executor;
...
public abstract class BaseExecutor implements Executor {
protected Transaction transaction;
protected Executor wrapper;
protected ConcurrentLinkedQueue<DeferredLoad> deferredLoads;
// mybatis的二级缓存 PerpetualCache实际上内部使用的是常规的Map
protected PerpetualCache localCache;
// 用于存储过程出参
protected PerpetualCache localOutputParameterCache;
protected Configuration configuration;
protected int queryStack;
// transaction的底层连接是否已经释放
private boolean closed;
protected BaseExecutor(Configuration configuration, Transaction transaction) {
this.transaction = transaction;
this.deferredLoads = new ConcurrentLinkedQueue<DeferredLoad>();
this.localCache = new PerpetualCache("LocalCache");
this.localOutputParameterCache = new PerpetualCache("LocalOutputParameterCache");
this.closed = false;
this.configuration = configuration;
this.wrapper = this;
}
@Override
public Transaction getTransaction() {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
return transaction;
}
// 关闭本执行器相关的transaction
@Override
public void close(boolean forceRollback) {
try {
try {
rollback(forceRollback);
} finally {
if (transaction != null) {
transaction.close();
}
}
} catch (SQLException e) {
// Ignore. There's nothing that can be done at this point.
log.warn("Unexpected exception on closing transaction. Cause: " + e);
} finally {
transaction = null;
deferredLoads = null;
localCache = null;
localOutputParameterCache = null;
closed = true;
}
}
@Override
public boolean isClosed() {
return closed;
}
// 更新操作
@Override
public int update(MappedStatement ms, Object parameter) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing an update").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
clearLocalCache();
return doUpdate(ms, parameter);
}
@Override
public List<BatchResult> flushStatements() throws SQLException {
return flushStatements(false);
}
public List<BatchResult> flushStatements(boolean isRollBack) throws SQLException {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
return doFlushStatements(isRollBack);
}
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameter);
CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
@SuppressWarnings("unchecked")
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) {
throw new ExecutorException("Executor was closed.");
}
if (queryStack == 0 && ms.isFlushCacheRequired()) {
clearLocalCache();
}
List<E> list;
try {
queryStack++;
list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
} finally {
queryStack--;
}
if (queryStack == 0) {
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
// issue #601
deferredLoads.clear();
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
// issue #482
clearLocalCache();
}
}
return list;
}
@Override
public <E> Cursor<E> queryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameter);
return doQueryCursor(ms, parameter, rowBounds, boundSql);
}
@Override
public void deferLoad(MappedStatement ms, MetaObject resultObject, String property, CacheKey key, Class<?> targetType) {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
DeferredLoad deferredLoad = new DeferredLoad(resultObject, property, key, localCache, configuration, targetType);
if (deferredLoad.canLoad()) {
deferredLoad.load();
} else {
deferredLoads.add(new DeferredLoad(resultObject, property, key, localCache, configuration, targetType));
}
}
@Override
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
CacheKey cacheKey = new CacheKey();
cacheKey.update(ms.getId());
cacheKey.update(rowBounds.getOffset());
cacheKey.update(rowBounds.getLimit());
cacheKey.update(boundSql.getSql());
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();
// mimic DefaultParameterHandler logic
for (ParameterMapping parameterMapping : parameterMappings) {
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) {
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
cacheKey.update(value);
}
}
if (configuration.getEnvironment() != null) {
// issue #176
cacheKey.update(configuration.getEnvironment().getId());
}
return cacheKey;
}
@Override
public boolean isCached(MappedStatement ms, CacheKey key) {
return localCache.getObject(key) != null;
}
@Override
public void commit(boolean required) throws SQLException {
if (closed) {
throw new ExecutorException("Cannot commit, transaction is already closed");
}
clearLocalCache();
flushStatements();
if (required) {
transaction.commit();
}
}
@Override
public void rollback(boolean required) throws SQLException {
if (!closed) {
try {
clearLocalCache();
flushStatements(true);
} finally {
if (required) {
transaction.rollback();
}
}
}
}
@Override
public void clearLocalCache() {
if (!closed) {
localCache.clear();
localOutputParameterCache.clear();
}
}
// 接下去的4个方法由子类进行实现
protected abstract int doUpdate(MappedStatement ms, Object parameter)
throws SQLException;
protected abstract List<BatchResult> doFlushStatements(boolean isRollback)
throws SQLException;
protected abstract <E> List<E> doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql)
throws SQLException;
protected abstract <E> Cursor<E> doQueryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds, BoundSql boundSql)
throws SQLException;
protected void closeStatement(Statement statement) {
if (statement != null) {
try {
statement.close();
} catch (SQLException e) {
// ignore
}
}
}
/**
* Apply a transaction timeout.
* @param statement a current statement
* @throws SQLException if a database access error occurs, this method is called on a closed <code>Statement</code>
* @since 3.4.0
* @see StatementUtil#applyTransactionTimeout(Statement, Integer, Integer)
*/
protected void applyTransactionTimeout(Statement statement) throws SQLException {
StatementUtil.applyTransactionTimeout(statement, statement.getQueryTimeout(), transaction.getTimeout());
}
private void handleLocallyCachedOutputParameters(MappedStatement ms, CacheKey key, Object parameter, BoundSql boundSql) {
if (ms.getStatementType() == StatementType.CALLABLE) {
final Object cachedParameter = localOutputParameterCache.getObject(key);
if (cachedParameter != null && parameter != null) {
final MetaObject metaCachedParameter = configuration.newMetaObject(cachedParameter);
final MetaObject metaParameter = configuration.newMetaObject(parameter);
for (ParameterMapping parameterMapping : boundSql.getParameterMappings()) {
if (parameterMapping.getMode() != ParameterMode.IN) {
final String parameterName = parameterMapping.getProperty();
final Object cachedValue = metaCachedParameter.getValue(parameterName);
metaParameter.setValue(parameterName, cachedValue);
}
}
}
}
}
private <E> List<E> queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
List<E> list;
localCache.putObject(key, EXECUTION_PLACEHOLDER);
try {
list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql);
} finally {
localCache.removeObject(key);
}
localCache.putObject(key, list);
if (ms.getStatementType() == StatementType.CALLABLE) {
localOutputParameterCache.putObject(key, parameter);
}
return list;
}
protected Connection getConnection(Log statementLog) throws SQLException {
Connection connection = transaction.getConnection();
if (statementLog.isDebugEnabled()) {
return ConnectionLogger.newInstance(connection, statementLog, queryStack);
} else {
return connection;
}
}
@Override
public void setExecutorWrapper(Executor wrapper) {
this.wrapper = wrapper;
}
private static class DeferredLoad {
private final MetaObject resultObject;
private final String property;
private final Class<?> targetType;
private final CacheKey key;
private final PerpetualCache localCache;
private final ObjectFactory objectFactory;
private final ResultExtractor resultExtractor;
// issue #781
public DeferredLoad(MetaObject resultObject,
String property,
CacheKey key,
PerpetualCache localCache,
Configuration configuration,
Class<?> targetType) {
this.resultObject = resultObject;
this.property = property;
this.key = key;
this.localCache = localCache;
this.objectFactory = configuration.getObjectFactory();
this.resultExtractor = new ResultExtractor(configuration, objectFactory);
this.targetType = targetType;
}
public boolean canLoad() {
return localCache.getObject(key) != null && localCache.getObject(key) != EXECUTION_PLACEHOLDER;
}
public void load() {
@SuppressWarnings( "unchecked" )
// we suppose we get back a List
List<Object> list = (List<Object>) localCache.getObject(key);
Object value = resultExtractor.extractObjectFromList(list, targetType);
resultObject.setValue(property, value);
}
}
}
我们先来看下BaseExecutor的属性,从上述BaseExecutor的定义可以看出:
- 执行器在特定的事务上下文下执行;
- 具有本地缓存和本地出参缓存(任何时候,只要事务提交或者回滚或者执行update或者查询时设定了刷新缓存,都会清空本地缓存和本地出参缓存);
- 具有延迟加载任务;
BaseExecutor实现了大部分通用功能本地缓存管理、事务提交、回滚、超时设置、延迟加载等,但是将下列4个方法留给了具体的子类实现:
protected abstract int doUpdate(MappedStatement ms, Object parameter)
throws SQLException;
protected abstract List<BatchResult> doFlushStatements(boolean isRollback)
throws SQLException;
protected abstract <E> List<E> doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql)
throws SQLException;
protected abstract <E> Cursor<E> doQueryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds, BoundSql boundSql)
throws SQLException;
从功能上来说,这三种执行器的差别在于:
- ExecutorType.SIMPLE:这个执行器类型不做特殊的事情。它为每个语句的每次执行创建一个新的预处理语句。
- ExecutorType.REUSE:这个执行器类型会复用预处理语句。
-
ExecutorType.BATCH:这个执行器会批量执行所有更新语句,也就是jdbc addBatch API的facade模式。
所以这三种类型的执行器可以说时应用于不同的负载场景下,除了SIMPLE类型外,另外两种要求对系统有较好的架构设计,当然也提供了更多的回报。
5.4.1 SIMPLE执行器
我们先来看SIMPLE各个方法的实现,
public class SimpleExecutor extends BaseExecutor {
public SimpleExecutor(Configuration configuration, Transaction transaction) {
super(configuration, transaction);
}
@Override
public int doUpdate(MappedStatement ms, Object parameter) throws SQLException {
Statement stmt = null;
try {
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(this, ms, parameter, RowBounds.DEFAULT, null, null);
stmt = prepareStatement(handler, ms.getStatementLog());
return handler.update(stmt);
} finally {
closeStatement(stmt);
}
}
@Override
public <E> List<E> doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) throws SQLException {
Statement stmt = null;
try {
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, resultHandler, boundSql);
stmt = prepareStatement(handler, ms.getStatementLog());
return handler.<E>query(stmt, resultHandler);
} finally {
closeStatement(stmt);
}
}
@Override
protected <E> Cursor<E> doQueryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds, BoundSql boundSql) throws SQLException {
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, null, boundSql);
Statement stmt = prepareStatement(handler, ms.getStatementLog());
return handler.<E>queryCursor(stmt);
}
@Override
public List<BatchResult> doFlushStatements(boolean isRollback) throws SQLException {
return Collections.emptyList();
}
private Statement prepareStatement(StatementHandler handler, Log statementLog) throws SQLException {
Statement stmt;
Connection connection = getConnection(statementLog);
stmt = handler.prepare(connection, transaction.getTimeout());
handler.parameterize(stmt);
return stmt;
}
}
简单执行器的实现非常的简单,我们就不展开详述了。下面俩看REUSE执行器。
5.4.2 REUSE执行器
我们来看下REUSE执行器中和SIMPLE执行器不同的地方:
public class ReuseExecutor extends BaseExecutor {
private final Map<String, Statement> statementMap = new HashMap<String, Statement>();
public ReuseExecutor(Configuration configuration, Transaction transaction) {
super(configuration, transaction);
}
@Override
public int doUpdate(MappedStatement ms, Object parameter) throws SQLException {
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(this, ms, parameter, RowBounds.DEFAULT, null, null);
Statement stmt = prepareStatement(handler, ms.getStatementLog());
return handler.update(stmt);
}
@Override
public <E> List<E> doQuery(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) throws SQLException {
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, resultHandler, boundSql);
Statement stmt = prepareStatement(handler, ms.getStatementLog());
return handler.<E>query(stmt, resultHandler);
}
@Override
protected <E> Cursor<E> doQueryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds, BoundSql boundSql) throws SQLException {
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, null, boundSql);
Statement stmt = prepareStatement(handler, ms.getStatementLog());
return handler.<E>queryCursor(stmt);
}
@Override
public List<BatchResult> doFlushStatements(boolean isRollback) throws SQLException {
for (Statement stmt : statementMap.values()) {
closeStatement(stmt);
}
statementMap.clear();
return Collections.emptyList();
}
private Statement prepareStatement(StatementHandler handler, Log statementLog) throws SQLException {
Statement stmt;
BoundSql boundSql = handler.getBoundSql();
String sql = boundSql.getSql();
if (hasStatementFor(sql)) {
stmt = getStatement(sql);
applyTransactionTimeout(stmt);
} else {
Connection connection = getConnection(statementLog);
stmt = handler.prepare(connection, transaction.getTimeout());
putStatement(sql, stmt);
}
handler.parameterize(stmt);
return stmt;
}
private boolean hasStatementFor(String sql) {
try {
return statementMap.keySet().contains(sql) && !statementMap.get(sql).getConnection().isClosed();
} catch (SQLException e) {
return false;
}
}
private Statement getStatement(String s) {
return statementMap.get(s);
}
private void putStatement(String sql, Statement stmt) {
statementMap.put(sql, stmt);
}
}
从实现可以看出,REUSE和SIMPLE在doUpdate/doQuery上有个差别,不再是每执行一个语句就close掉了,而是尽可能的根据SQL文本进行缓存并重用,但是由于数据库服务器端通常对每个连接以及全局的语句(oracle称为游标)handler的数量有限制,oracle中是open_cursors参数控制,mysql中是mysql_stmt_close参数控制,这就会导致如果sql都是靠if各种拼接出来,日积月累可能会导致数据库资源耗尽。其是否有足够价值,视创建Statement语句消耗的资源占整体资源的比例、以及一共有多少完全不同的Statement数量而定,一般来说,纯粹的OLTP且非自动生成的sqlmap,它会比SIMPLE执行器更好。
5.4.3 BATCH执行器
BATCH执行器的实现代码如下:
public class BatchExecutor extends BaseExecutor {
public static final int BATCH_UPDATE_RETURN_VALUE = Integer.MIN_VALUE + 1002;
// 存储在一个事务中的批量DML的语句列表
private final List<Statement> statementList = new ArrayList<Statement>();
// 存放DML语句对应的参数对象,包括自动/手工生成的key
private final List<BatchResult> batchResultList = new ArrayList<BatchResult>();
// 最新提交执行的SQL语句
private String currentSql;
// 最新提交执行的语句
private MappedStatement currentStatement;
public BatchExecutor(Configuration configuration, Transaction transaction) {
super(configuration, transaction);
}
@Override
public int doUpdate(MappedStatement ms, Object parameterObject) throws SQLException {
final Configuration configuration = ms.getConfiguration();
final StatementHandler handler = configuration.newStatementHandler(this, ms, parameterObject, RowBounds.DEFAULT, null, null);
final BoundSql boundSql = handler.getBoundSql();
final String sql = boundSql.getSql();
final Statement stmt;
// 如果最新执行的一条语句和前面一条语句相同,就不创建新的语句了,直接用缓存的语句,只是把参数对象添加到该语句对应的BatchResult中
// 否则的话,无论是否在未提交之前,还有pending的语句,都新插入一条语句到list中
if (sql.equals(currentSql) && ms.equals(currentStatement)) {
int last = statementList.size() - 1;
stmt = statementList.get(last);
applyTransactionTimeout(stmt);
handler.parameterize(stmt);//fix Issues 322
BatchResult batchResult = batchResultList.get(last);
batchResult.addParameterObject(parameterObject);
} else {
Connection connection = getConnection(ms.getStatementLog());
stmt = handler.prepare(connection, transaction.getTimeout());
handler.parameterize(stmt); //fix Issues 322
currentSql = sql;
currentStatement = ms;
statementList.add(stmt);
batchResultList.add(new BatchResult(ms, sql, parameterObject));
}
// handler.parameterize(stmt);
// 调用jdbc的addBatch方法
handler.batch(stmt);
return BATCH_UPDATE_RETURN_VALUE;
}
@Override
public <E> List<E> doQuery(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql)
throws SQLException {
Statement stmt = null;
try {
flushStatements();
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameterObject, rowBounds, resultHandler, boundSql);
Connection connection = getConnection(ms.getStatementLog());
stmt = handler.prepare(connection, transaction.getTimeout());
handler.parameterize(stmt);
return handler.<E>query(stmt, resultHandler);
} finally {
closeStatement(stmt);
}
}
@Override
protected <E> Cursor<E> doQueryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds, BoundSql boundSql) throws SQLException {
flushStatements();
Configuration configuration = ms.getConfiguration();
StatementHandler handler = configuration.newStatementHandler(wrapper, ms, parameter, rowBounds, null, boundSql);
Connection connection = getConnection(ms.getStatementLog());
Statement stmt = handler.prepare(connection, transaction.getTimeout());
handler.parameterize(stmt);
return handler.<E>queryCursor(stmt);
}
@Override
public List<BatchResult> doFlushStatements(boolean isRollback) throws SQLException {
try {
List<BatchResult> results = new ArrayList<BatchResult>();
if (isRollback) {
return Collections.emptyList();
}
for (int i = 0, n = statementList.size(); i < n; i++) {
Statement stmt = statementList.get(i);
applyTransactionTimeout(stmt);
BatchResult batchResult = batchResultList.get(i);
try {
batchResult.setUpdateCounts(stmt.executeBatch());
MappedStatement ms = batchResult.getMappedStatement();
List<Object> parameterObjects = batchResult.getParameterObjects();
KeyGenerator keyGenerator = ms.getKeyGenerator();
if (Jdbc3KeyGenerator.class.equals(keyGenerator.getClass())) {
Jdbc3KeyGenerator jdbc3KeyGenerator = (Jdbc3KeyGenerator) keyGenerator;
jdbc3KeyGenerator.processBatch(ms, stmt, parameterObjects);
} else if (!NoKeyGenerator.class.equals(keyGenerator.getClass())) { //issue #141
for (Object parameter : parameterObjects) {
keyGenerator.processAfter(this, ms, stmt, parameter);
}
}
// Close statement to close cursor #1109
closeStatement(stmt);
} catch (BatchUpdateException e) {
StringBuilder message = new StringBuilder();
message.append(batchResult.getMappedStatement().getId())
.append(" (batch index #")
.append(i + 1)
.append(")")
.append(" failed.");
if (i > 0) {
message.append(" ")
.append(i)
.append(" prior sub executor(s) completed successfully, but will be rolled back.");
}
throw new BatchExecutorException(message.toString(), e, results, batchResult);
}
results.add(batchResult);
}
return results;
} finally {
for (Statement stmt : statementList) {
closeStatement(stmt);
}
currentSql = null;
statementList.clear();
batchResultList.clear();
}
}
}
批量执行器是JDBC Statement.addBatch的实现,对于批量insert而言比如导入大量数据的ETL,驱动器如果支持的话,能够大幅度的提高DML语句的性能(首先最重要的是,网络交互就大幅度减少了),比如对于mysql而言,在5.1.13以上版本的驱动,在连接字符串上rewriteBatchedStatements参数也就是jdbc:mysql://192.168.1.100:3306/test?rewriteBatchedStatements=true后,性能可以提高几十倍,参见 https://www.cnblogs.com/kxdblog/p/4056010.html 以及 http://blog.sina.com.cn/s/blog_68b4c68f01013yog.html 。因为BatchExecutor对于每个statementList中的语句,都执行executeBatch()方法,因此最差的极端情况是交叉执行不同的DML SQL语句,这种情况退化为原始的方式。比如下列形式就是最差的情况:
for(int i=0;i<100;i++) {
session.update("insertUser", userReq);
session.update("insertUserProfile", userReq);
}
5.4.4 缓存执行器CachingExecutor的实现
public class CachingExecutor implements Executor {
private final Executor delegate;
private final TransactionalCacheManager tcm = new TransactionalCacheManager();
public CachingExecutor(Executor delegate) {
this.delegate = delegate;
delegate.setExecutorWrapper(this);
}
@Override
public Transaction getTransaction() {
return delegate.getTransaction();
}
@Override
public void close(boolean forceRollback) {
try {
//issues #499, #524 and #573
if (forceRollback) {
tcm.rollback();
} else {
tcm.commit();
}
} finally {
delegate.close(forceRollback);
}
}
@Override
public boolean isClosed() {
return delegate.isClosed();
}
@Override
public int update(MappedStatement ms, Object parameterObject) throws SQLException {
flushCacheIfRequired(ms);
return delegate.update(ms, parameterObject);
}
@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
BoundSql boundSql = ms.getBoundSql(parameterObject);
CacheKey key = createCacheKey(ms, parameterObject, rowBounds, boundSql);
return query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
@Override
public <E> Cursor<E> queryCursor(MappedStatement ms, Object parameter, RowBounds rowBounds) throws SQLException {
flushCacheIfRequired(ms);
return delegate.queryCursor(ms, parameter, rowBounds);
}
@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
Cache cache = ms.getCache();
// 首先判断是否启用了二级缓存
if (cache != null) {
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, boundSql);
@SuppressWarnings("unchecked")
// 然后判断缓存中是否有对应的缓存条目(正常情况下,执行DML操作会清空缓存,也可以语句层面明确明确设置),有的话则返回,这样就不用二次查询了
List<E> list = (List<E>) tcm.getObject(cache, key);
if (list == null) {
list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
tcm.putObject(cache, key, list); // issue #578 and #116
}
return list;
}
}
return delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
@Override
public List<BatchResult> flushStatements() throws SQLException {
return delegate.flushStatements();
}
@Override
public void commit(boolean required) throws SQLException {
delegate.commit(required);
tcm.commit();
}
@Override
public void rollback(boolean required) throws SQLException {
try {
delegate.rollback(required);
} finally {
if (required) {
tcm.rollback();
}
}
}
// 存储过程不支持二级缓存
private void ensureNoOutParams(MappedStatement ms, BoundSql boundSql) {
if (ms.getStatementType() == StatementType.CALLABLE) {
for (ParameterMapping parameterMapping : boundSql.getParameterMappings()) {
if (parameterMapping.getMode() != ParameterMode.IN) {
throw new ExecutorException("Caching stored procedures with OUT params is not supported. Please configure useCache=false in " + ms.getId() + " statement.");
}
}
}
}
@Override
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
return delegate.createCacheKey(ms, parameterObject, rowBounds, boundSql);
}
@Override
public boolean isCached(MappedStatement ms, CacheKey key) {
return delegate.isCached(ms, key);
}
@Override
public void deferLoad(MappedStatement ms, MetaObject resultObject, String property, CacheKey key, Class<?> targetType) {
delegate.deferLoad(ms, resultObject, property, key, targetType);
}
@Override
public void clearLocalCache() {
delegate.clearLocalCache();
}
private void flushCacheIfRequired(MappedStatement ms) {
Cache cache = ms.getCache();
if (cache != null && ms.isFlushCacheRequired()) {
tcm.clear(cache);
}
}
@Override
public void setExecutorWrapper(Executor executor) {
throw new UnsupportedOperationException("This method should not be called");
}
}
缓存执行器相对于其他执行器的差别在于,首先是在query()方法中判断是否使用二级缓存(也就是mapper级别的缓存)。虽然mybatis默认启用了CachingExecutor,但是如果在mapper层面没有明确设置二级缓存的话,就退化为SimpleExecutor了。二级缓存的维护由TransactionalCache(事务化缓存)负责,当在TransactionalCacheManager(事务化缓存管理器)中调用putObject和removeObject方法的时候并不是马上就把对象存放到缓存或者从缓存中删除,而是先把这个对象放到entriesToAddOnCommit和entriesToRemoveOnCommit这两个HashMap之中的一个里,然后当执行commit/rollback方法时再真正地把对象存放到缓存或者从缓存中删除,具体可以参见TransactionalCache.commit/rollback方法。
还有一个差别是使用了TransactionalCacheManager管理事务,其他逻辑就一样了。
5.2 参数处理器ParameterHandler
ParameterHandler的接口定义如下:
public interface ParameterHandler {
Object getParameterObject();
void setParameters(PreparedStatement ps)
throws SQLException;
}
ParameterHandler只有一个默认实现DefaultParameterHandler,它的代码如下:
public class DefaultParameterHandler implements ParameterHandler {
private final TypeHandlerRegistry typeHandlerRegistry;
private final MappedStatement mappedStatement;
private final Object parameterObject;
private final BoundSql boundSql;
private final Configuration configuration;
public DefaultParameterHandler(MappedStatement mappedStatement, Object parameterObject, BoundSql boundSql) {
this.mappedStatement = mappedStatement;
this.configuration = mappedStatement.getConfiguration();
this.typeHandlerRegistry = mappedStatement.getConfiguration().getTypeHandlerRegistry();
this.parameterObject = parameterObject;
this.boundSql = boundSql;
}
@Override
public Object getParameterObject() {
return parameterObject;
}
// 设置PreparedStatement的入参
@Override
public void setParameters(PreparedStatement ps) {
ErrorContext.instance().activity("setting parameters").object(mappedStatement.getParameterMap().getId());
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
if (parameterMappings != null) {
for (int i = 0; i < parameterMappings.size(); i++) {
ParameterMapping parameterMapping = parameterMappings.get(i);
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) { // issue #448 ask first for additional params
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
TypeHandler typeHandler = parameterMapping.getTypeHandler();
JdbcType jdbcType = parameterMapping.getJdbcType();
if (value == null && jdbcType == null) {
jdbcType = configuration.getJdbcTypeForNull();
}
try {
typeHandler.setParameter(ps, i + 1, value, jdbcType);
} catch (TypeException e) {
throw new TypeException("Could not set parameters for mapping: " + parameterMapping + ". Cause: " + e, e);
} catch (SQLException e) {
throw new TypeException("Could not set parameters for mapping: " + parameterMapping + ". Cause: " + e, e);
}
}
}
}
}
}
ParameterHandler的实现很简单,上面在执行语句的时候详细解释了每个步骤,这里就不重复了。
5.3 语句处理器StatementHandler
先来看下StatementHandler的定义:
public interface StatementHandler {
Statement prepare(Connection connection, Integer transactionTimeout)
throws SQLException;
void parameterize(Statement statement)
throws SQLException;
void batch(Statement statement)
throws SQLException;
int update(Statement statement)
throws SQLException;
<E> List<E> query(Statement statement, ResultHandler resultHandler)
throws SQLException;
<E> Cursor<E> queryCursor(Statement statement)
throws SQLException;
BoundSql getBoundSql();
ParameterHandler getParameterHandler();
}
从接口可以看出,StatementHandler主要包括prepare语句、给语句设置参数、执行语句获取要执行的SQL语句本身。mybatis包含了三种类型的StatementHandler实现:
分别用于JDBC对应的PrepareStatement,Statement以及CallableStatement。BaseStatementHandler是这三种类型语句处理器的抽象父类,封装了一些实现细节比如设置超时时间、结果集每次提取大小等操作,代码如下:
public abstract class BaseStatementHandler implements StatementHandler {
protected final Configuration configuration;
protected final ObjectFactory objectFactory;
protected final TypeHandlerRegistry typeHandlerRegistry;
protected final ResultSetHandler resultSetHandler;
protected final ParameterHandler parameterHandler;
protected final Executor executor;
protected final MappedStatement mappedStatement;
protected final RowBounds rowBounds;
protected BoundSql boundSql;
protected BaseStatementHandler(Executor executor, MappedStatement mappedStatement, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, BoundSql boundSql) {
this.configuration = mappedStatement.getConfiguration();
this.executor = executor;
this.mappedStatement = mappedStatement;
this.rowBounds = rowBounds;
this.typeHandlerRegistry = configuration.getTypeHandlerRegistry();
this.objectFactory = configuration.getObjectFactory();
if (boundSql == null) { // issue #435, get the key before calculating the statement
// 首先执行SelectKey对应的SQL语句把ID生成
generateKeys(parameterObject);
boundSql = mappedStatement.getBoundSql(parameterObject);
}
this.boundSql = boundSql;
this.parameterHandler = configuration.newParameterHandler(mappedStatement, parameterObject, boundSql);
this.resultSetHandler = configuration.newResultSetHandler(executor, mappedStatement, rowBounds, parameterHandler, resultHandler, boundSql);
}
@Override
public BoundSql getBoundSql() {
return boundSql;
}
@Override
public ParameterHandler getParameterHandler() {
return parameterHandler;
}
// prepare SQL语句
@Override
public Statement prepare(Connection connection, Integer transactionTimeout) throws SQLException {
ErrorContext.instance().sql(boundSql.getSql());
Statement statement = null;
try {
// 创建Statement
statement = instantiateStatement(connection);
setStatementTimeout(statement, transactionTimeout);
setFetchSize(statement);
return statement;
} catch (SQLException e) {
closeStatement(statement);
throw e;
} catch (Exception e) {
closeStatement(statement);
throw new ExecutorException("Error preparing statement. Cause: " + e, e);
}
}
// 不同类型语句的初始化过程不同,比如Statement语句直接调用JDBC java.sql.Connection.createStatement,而PrepareStatement则是调用java.sql.Connection.prepareStatement
protected abstract Statement instantiateStatement(Connection connection) throws SQLException;
// 设置JDBC语句超时时间,注:数据库服务器端也可以设置语句超时时间。mysql通过参数max_statement_time设置,oracle截止12.2c不支持
protected void setStatementTimeout(Statement stmt, Integer transactionTimeout) throws SQLException {
Integer queryTimeout = null;
if (mappedStatement.getTimeout() != null) {
queryTimeout = mappedStatement.getTimeout();
} else if (configuration.getDefaultStatementTimeout() != null) {
queryTimeout = configuration.getDefaultStatementTimeout();
}
if (queryTimeout != null) {
stmt.setQueryTimeout(queryTimeout);
}
StatementUtil.applyTransactionTimeout(stmt, queryTimeout, transactionTimeout);
}
// fetchSize设置每次从服务器端提取的行数,默认不同数据库实现不同,mysql一次性提取全部,oracle默认10。正确设置fetchSize可以避免OOM并且对性能有一定的影响,尤其是在网络延时较大的情况下
protected void setFetchSize(Statement stmt) throws SQLException {
Integer fetchSize = mappedStatement.getFetchSize();
if (fetchSize != null) {
stmt.setFetchSize(fetchSize);
return;
}
Integer defaultFetchSize = configuration.getDefaultFetchSize();
if (defaultFetchSize != null) {
stmt.setFetchSize(defaultFetchSize);
}
}
protected void closeStatement(Statement statement) {
try {
if (statement != null) {
statement.close();
}
} catch (SQLException e) {
//ignore
}
}
protected void generateKeys(Object parameter) {
KeyGenerator keyGenerator = mappedStatement.getKeyGenerator();
ErrorContext.instance().store();
keyGenerator.processBefore(executor, mappedStatement, null, parameter);
ErrorContext.instance().recall();
}
}
5.4 结果集处理器ResultSetHandler
结果集处理器,顾名知义,就是用了对查询结果集进行处理的,目标是将JDBC结果集映射为业务对象。其接口定义如下:
public interface ResultSetHandler {
<E> List<E> handleResultSets(Statement stmt) throws SQLException;
<E> Cursor<E> handleCursorResultSets(Statement stmt) throws SQLException;
void handleOutputParameters(CallableStatement cs) throws SQLException;
}
接口中定义的三个接口分别用于处理常规查询的结果集,游标查询的结果集以及存储过程调用的出参设置。和参数处理器一样,结果集处理器也只有一个默认实现DefaultResultSetHandler。结果集处理器的功能包括对象的实例化、属性自动匹配计算、常规属性赋值、嵌套ResultMap的处理、嵌套查询的处理、鉴别器结果集的处理等,每个功能我们在分析SQL语句执行selectXXX的时候都详细的讲解过了,具体可以参见selectXXX部分。