天天看点

MySQL B+树索引(BTREE)和哈希索引(HASH)的区别

索引是帮助mysql获取数据的数据结构。

最常见的索引是Btree索引和Hash索引。

不同的引擎对于索引有不同的支持:Innodb和MyISAM默认的索引是Btree索引;而Mermory默认的索引是Hash索引。

我们在mysql中常用两种索引算法BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样。

其他相关文章:MySQL B+树索引和哈希索引的区别

一、BTree

BTree索引是最常用的mysql数据库索引算法,因为它不仅可以被用在=,>,>=,<,<=和between这些比较操作符上,而且还可以用于like操作符,只要它的查询条件是一个不以通配符开头的常量,例如:

select * from user where name like ‘jack%’;

select * from user where name like ‘jac%k%’;

如果一通配符开头,或者没有使用常量,则不会使用索引,例如:

select * from user where name like ‘%jack’;

select * from user where name like simply_name;

二、Hash

Hash索引只能用于对等比较,例如=,<=>(相当于=)操作符。由于是一次定位数据,不像BTree索引需要从根节点到枝节点,最后才能访问到页节点这样多次IO访问,所以检索效率远高于BTree索引。

但为什么我们使用BTree比使用Hash多呢?主要Hash本身由于其特殊性,也带来了很多限制和弊端:

1. Hash索引仅仅能满足“=”,“IN”,“<=>”查询,不能使用范围查询。

2. 联合索引中,Hash索引不能利用部分索引键查询。

对于联合索引中的多个列,Hash是要么全部使用,要么全部不使用,并不支持BTree支持的联合索引的最优前缀,也就是联合索引的前面一个或几个索引键进行查询时,Hash索引无法被利用。

3. Hash索引无法避免数据的排序操作

由于Hash索引中存放的是经过Hash计算之后的Hash值,而且Hash值的大小关系并不一定和Hash运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算。

4. Hash索引任何时候都不能避免表扫描

Hash索引是将索引键通过Hash运算之后,将Hash运算结果的Hash值和所对应的行指针信息存放于一个Hash表中,由于不同索引键存在相同Hash值,所以即使满足某个Hash键值的数据的记录条数,也无法从Hash索引中直接完成查询,还是要通过访问表中的实际数据进行比较,并得到相应的结果。

5. Hash索引遇到大量Hash值相等的情况后性能并不一定会比BTree高

对于选择性比较低的索引键,如果创建Hash索引,那么将会存在大量记录指针信息存于同一个Hash值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据访问,而造成整体性能底下。

三、两种索引的优缺点

Hash索引

所谓Hash索引,当我们要给某张表某列增加索引时,将这张表的这一列进行哈希算法计算,得到哈希值,排序在哈希数组上。所以Hash索引可以一次定位,其效率很高,而Btree索引需要经过多次的磁盘IO,但是innodb和myisam之所以没有采用它,是因为它存在着好多缺点:

1、因为Hash索引比较的是经过Hash计算的值,所以只能进行等式比较,不能用于范围查询

1、每次都要全表扫描

2、由于哈希值是按照顺序排列的,但是哈希值映射的真正数据在哈希表中就不一定按照顺序排列,所以无法利用Hash索引来加速任何排序操作

3、不能用部分索引键来搜索,因为组合索引在计算哈希值的时候是一起计算的。

4、当哈希值大量重复且数据量非常大时,其检索效率并没有Btree索引高的。

Btree索引

至于Btree索引,它是以B+树为存储结构实现的。

但是Btree索引的存储结构在Innodb和MyISAM中有很大区别。

在MyISAM中,我们如果要对某张表的某列建立Btree索引的话,如图:

所以我们经常会说MyISAM中数据文件和索引文件是分开的。

因此MyISAM的索引方式也称为非聚集,Innodb的索引方式成为聚集索引。

至于辅助索引,类似于主索引,唯一区别就是主索引上的值不能重复,而辅助索引可以重复。

因此当我们根据Btree索引去搜索的时候,若key存在,在data域找到其地址,然后根据地址去表中查找数据记录。

至于Innodb它跟上面又有很大不同,它的叶子节点存储的并不是表的地址,而是数据

我们可以看到这里并没有将地址放入叶子节点,而是直接放入了对应的数据,这也就是我们平常说到的,Innodb的索引文件就是数据文件,

那么对于Innodb的辅助索引结构跟主索引也相差很多,如图:

(图源未知)

我们可以发现,这里叶子节点存储的是主键的信息,所以我们在利用辅助索引的时候,检索到主键信息,然后再通过主键去主索引中定位表中的数据,这就可以说明Innodb中主键之所以不宜用过长的字段,由于所有的辅助索引都包含主索引,所以很容易让辅助索引变得庞大。

我们还可以发现:在Innodb中尽量使用自增的主键,这样每次增加数据时只需要在后面添加即可,非单调的主键在插入时会需要维持B+tree特性而进行分裂调整,十分低效。

Btree索引中的最左匹配原则:

Btree是按照从左到右的顺序来建立搜索树的。比如索引是(name,age,sex),会先检查name字段,如果name字段相同再去检查后两个字段。

所以当传进来的是后两个字段的数据(age,sex),因为建立搜索树的时候是按照第一个字段建立的,所以必须根据name字段才能知道下一个字段去哪里查询。

所以传进来的是(name,sex)时,首先会根据name指定搜索方向,但是第二个字段缺失,所以将name字段正确的都找到后,然后才会去匹配sex的数据。

建立索引的规则:

1、利用最左前缀:Mysql会一直向右查找直到遇到范围操作(>,<,like、between)就停止匹配。比如a=1 and b=2 and c>3 and d=6;此时如果建立了(a,b,c,d)索引,那么后面的d索引是完全没有用到,当换成了(a,b,d,c)就可以用到。

2、不能过度索引:在修改表内容的时候,索引必须更新或者重构,所以索引过多时,会消耗更多的时间。

3、尽量扩展索引而不要新建索引

4、最适合的索引的列是出现在where子句中的列或连接子句中指定的列。

5、不同值较少的列不必要建立索引(性别)。

继续阅读