天天看点

可视化(一):在模型训练过程中,绘制特征的可视化图一,用途二,步骤

原文

一,用途

主要用于证明方法的有效性、增加工作量、增加论文字数。,用于比较验证。

可视化两个图,使用了新方法的和使用之前的,相互比较,根据图标内容写论文,说明新方法体现的作用。

二,步骤

1,加载数据并预处理

加载数据:通过classdataset,生成数据加载迭代器。(这里仅加载一张图片,跳过此操作)

数据(图片)预处理:调整大小 —— 转化为Tensor格式 —— 归一化 —— 数据增强 —— 图片数据处理等(这里取前三个)

def image_proprecess(img_path):
    img = Image.open(img_path)
    data_transforms = transforms.Compose([
        transforms.Resize((384, 384), interpolation=3),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
    data = data_transforms(img)
    data = torch.unsqueeze(data,0)
    return data
           

加载一张图时,使用 torch.unsqueeze 将三维张量变成四维。

2,修改网络

当需要可视化某一层的特征图时,需要将该层的特征图返回出来,所以修改网络中的 forward 函数:

def forward(self, x):
    x = self.model.conv1(x)
    x = self.model.bn1(x)
    x = self.model.relu(x)
    x = self.model.maxpool(x)
    feature = self.model.layer1(x)
    x = self.model.layer2(feature)
    x = self.model.layer3(x)
    x = self.model.layer4(x)
    return feature,x
           

3, 定义网络并加载预训练模型

def Init_Setting(epoch):
    dirname = '/mnt/share/VideoReID/share/models/Methods5_trial1'
    model = siamese_resnet50(701, stride=1, pool='avg')
    trained_path = os.path.join(dirname, 'net_%03d.pth' % epoch)
    print("load %03d.pth" % epoch)
    model.load_state_dict(torch.load(trained_path))
    model = model.cuda().eval()
    return model
           

注:最后一行,为将网络设置为推理模式

4,可视化特征图

将特征图的某一通道转化为一张图来进行可视化:

def visualize_feature_map(img_batch,out_path,type,BI):
    feature_map = torch.squeeze(img_batch)
    feature_map = feature_map.detach().cpu().numpy()

    feature_map_sum = feature_map[0, :, :]
    feature_map_sum = np.expand_dims(feature_map_sum, axis=2)
    for i in range(0, 2048):
        feature_map_split = feature_map[i,:, :]
        feature_map_split = np.expand_dims(feature_map_split,axis=2)
        if i > 0:
            feature_map_sum +=feature_map_split
        feature_map_split = BI.transform(feature_map_split)

        plt.imshow(feature_map_split)
        plt.savefig(out_path + str(i) + "_{}.jpg".format(type) )
        plt.xticks()
        plt.yticks()
        plt.axis('off')

    feature_map_sum = BI.transform(feature_map_sum)
    plt.imshow(feature_map_sum)
    plt.savefig(out_path + "sum_{}.jpg".format(type))
    print("save sum_{}.jpg".format(type))
           
  1. 参数img_batch是从网络中的某一层传回来的特征图,BI是双线性插值的函数,自定义的,下面会讲。
  2. 由于只可视化了一张图片,因此img_batch是四维的,且batchsize维为1。第三行将它从GPU上弄到CPU上,并变成numpy格式。
  3. 剩下部分主要完成将每个通道变成一张图,以及将所有通道每个元素对应位置相加,并保存。

双线性插值

在经过多次网络下采样后,后面层的特征图一般变得只有7×7,16×16大小。可视化后特别小,因此需要对其进行上采样。双线性插值就是上采样方法之一,

class BilinearInterpolation(object):
    def __init__(self, w_rate: float, h_rate: float, *, align='center'):
        if align not in ['center', 'left']:
            logging.exception(f'{align} is not a valid align parameter')
            align = 'center'
        self.align = align
        self.w_rate = w_rate
        self.h_rate = h_rate

    def set_rate(self,w_rate: float, h_rate: float):
        self.w_rate = w_rate    # w 的缩放率
        self.h_rate = h_rate    # h 的缩放率

    # 由变换后的像素坐标得到原图像的坐标    针对高
    def get_src_h(self, dst_i,source_h,goal_h) -> float:
        if self.align == 'left':
            # 左上角对齐
            src_i = float(dst_i * (source_h/goal_h))
        elif self.align == 'center':
            # 将两个图像的几何中心重合。
            src_i = float((dst_i + 0.5) * (source_h/goal_h) - 0.5)
        src_i += 0.001
        src_i = max(0.0, src_i)
        src_i = min(float(source_h - 1), src_i)
        return src_i
    # 由变换后的像素坐标得到原图像的坐标    针对宽
    def get_src_w(self, dst_j,source_w,goal_w) -> float:
        if self.align == 'left':
            # 左上角对齐
            src_j = float(dst_j * (source_w/goal_w))
        elif self.align == 'center':
            # 将两个图像的几何中心重合。
            src_j = float((dst_j + 0.5) * (source_w/goal_w) - 0.5)
        src_j += 0.001
        src_j = max(0.0, src_j)
        src_j = min((source_w - 1), src_j)
        return src_j

    def transform(self, img):
        source_h, source_w, source_c = img.shape  # (235, 234, 3)
        goal_h, goal_w = round(
            source_h * self.h_rate), round(source_w * self.w_rate)
        new_img = np.zeros((goal_h, goal_w, source_c), dtype=np.uint8)

        for i in range(new_img.shape[0]):       # h
            src_i = self.get_src_h(i,source_h,goal_h)
            for j in range(new_img.shape[1]):
                src_j = self.get_src_w(j,source_w,goal_w)
                i2 = ceil(src_i)
                i1 = int(src_i)
                j2 = ceil(src_j)
                j1 = int(src_j)
                x2_x = j2 - src_j
                x_x1 = src_j - j1
                y2_y = i2 - src_i
                y_y1 = src_i - i1
                new_img[i, j] = img[i1, j1]*x2_x*y2_y + img[i1, j2] * \
                    x_x1*y2_y + img[i2, j1]*x2_x*y_y1 + img[i2, j2]*x_x1*y_y1
        return new_img
#使用方法
BI = BilinearInterpolation(8, 8)
feature_map = BI.transform(feature_map)
           

5,主函数流程

imgs_path = "/path/to/imgs/"
save_path = "/save/path/to/output/"
model = Init_Setting(120)
BI = BilinearInterpolation(8, 8)

data = image_proprecess(out_path + "0836.jpg")
data = data.cuda()
output, _ = model(data)
visualize_feature_map(output, save_path, "drone", BI)
           

仅作学习记录分享,侵联删。

继续阅读