天天看点

windows编程笔记,线程同步的实现

不说原理,只说使用示例。

先统计下线程同步可以使用到的内容:

  • 原子锁

     InterlockedExchangeAdd()

  • 旋转锁

     InterlockedExchange()

  • 关键段

     InitializeCriticalSection()、DeleteCriticalSection()

     EnterCriticalSection()、LeaveCriticalSection()

     TryEnterCriticalSection()不等待,返回FALSE表示资源被用

     InitializeCriticalSectionAndSpinCount()、SetCriticalSectionSpinCount()关键段与旋转锁配合

  • Slim读写锁

     InitializeSRWLock()

     写锁:AcquireSRWLockExclusive()、ReleaseSRWLockExclusive()

     读锁:AcquireSRWLockShared()、ReleaseSRWLockShared()

  • 事件和等待函数

     等待函数:WaitForSingleObject()

     CreateEvent()、ResetEvent()、SetEvent()

  • 信号量和等待函数

     CreateThread()、OpenSemaphore()、ReleaseSemaphore()

  • 互斥锁/互斥量和等待函数

     CreateMutex()、OpenMutex()、ReleaseMutex()

先看下面一段代码来简单说明一下为什么需要使用线程同步。

#include <Windows.h>
#include <stdio.h>
#define COUNT 100000
long g_x = 0;
DWORD WINAPI ThreadFunc(PVOID pPara);
int main(void)
{
 HANDLE hThread_1 = NULL, hThread_2 = NULL;
 DWORD ThreadID_1, ThreadID_2;
 hThread_1 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_1);
 hThread_2 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_2);
 CloseHandle(hThread_1);
 CloseHandle(hThread_2);
 Sleep(1000);
 printf("%d\n", g_x);
 getchar();
 return 0;
}
DWORD WINAPI ThreadFunc(PVOID pPara)
{
 int tick = 0;
 while (tick++ < COUNT)
 {
  g_x++;
 }
 return 0;
}
           

在COUNT比较大时,直接使用g_x++; 最后g_x得出的结果不会是COUNT的两倍,而且是一个不确定的数。这里的问题就是常见的资源抢占问题。因为g_x++;这句话在计算机执行时被分为三步执行。如果感兴趣了解为什么被分为三步就会出现问题,推荐去看看windows核心编程。这里不深究。

解决方法一,原子锁:

DWORD WINAPI ThreadFunc(PVOID pPara)
{
 int tick = 0;
 while (tick++ < COUNT)
 {
  //g_x++;
  InterlockedExchangeAdd(&g_x, 1);
 }
 return 0;
}
           

解决方法二,旋转锁,谨慎使用:

unsigned int g_fResourceInUse = 0;
DWORD WINAPI ThreadFunc(PVOID pPara)
{
 int tick = 0;
 while (InterlockedExchange(&g_fResourceInUse, 1) == 1)
  Sleep(0); //避免线程浪费CPU,及资源访问被拒绝。
 while (tick++ < COUNT)
 {
  g_x++;
 }
 InterlockedExchange(&g_fResourceInUse, 0);
 return 0;
}
           

解决方法三,关键段:

int main(void)
{
 HANDLE hThread_1 = NULL, hThread_2 = NULL;
 DWORD ThreadID_1, ThreadID_2;
 if (0)
 {
  InitializeCriticalSection(&g_cs);
 }else{
  InitializeCriticalSectionAndSpinCount(&g_cs, 4000);
  SetCriticalSectionSpinCount(&g_cs, 5000);
 }
 hThread_1 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_1);
 hThread_2 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_2);
 CloseHandle(hThread_1);
 CloseHandle(hThread_2);
 Sleep(1000);
 printf("%d\n", g_x);
 DeleteCriticalSection(&g_cs);
 getchar();
 return 0;
}
CRITICAL_SECTION g_cs;
DWORD WINAPI ThreadFunc(PVOID pPara)
{
 int tick = 0;
 EnterCriticalSection(&g_cs);
 while (tick++ < COUNT)
 {
  g_x++;
 }
 LeaveCriticalSection(&g_cs);
 return 0;
}
           

解决方法四,Slim读写锁:

int main(void)
{
 SRWLOCK SRWLock;
 InitializeSRWLock(&SRWLock);
 AcquireSRWLockExclusive(&SRWLock);
 g_x++;
 ReleaseSRWLockExclusive(&SRWLock);
 AcquireSRWLockShared(&SRWLock);
 printf("%d\n", g_x);
 ReleaseSRWLockShared(&SRWLock);
 getchar();
 return 0;
}
           

解决方法五,等待函数和事件:

HANDLE hTdEvent;
int main(void)
{
 HANDLE hThread_1 = NULL, hThread_2 = NULL;
 DWORD ThreadID_1, ThreadID_2;
 hTdEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 hThread_1 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_1);
 hThread_2 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_2);
 CloseHandle(hThread_1);
 CloseHandle(hThread_2);
 SetEvent(hTdEvent);
 Sleep(1000);
 printf("%d\n", g_x);
 getchar();
 return 0;
}
DWORD WINAPI ThreadFunc(PVOID pPara)
{
 int tick = 0;
 WaitForSingleObject(hTdEvent, INFINITE);
 ResetEvent(hTdEvent);
 while (tick++ < COUNT)
 {
  g_x++;
 }
 SetEvent(hTdEvent);
 return 0;
}
           

解决方法六,信号量和等待函数,可用于服务器连接数达到上限时拒绝访问:

OpenSemaphore();
HANDLE hSemaphore;
int main(void)
{
 HANDLE hThread = NULL;
 DWORD ThreadID;
 if (1)
 {
  hSemaphore = CreateSemaphore(NULL, 1, 1, NULL);
 }else{
  hSemaphore = CreateSemaphore(NULL, 0, 1, NULL);
  ReleaseSemaphore(hSemaphore, 1, NULL);
 }
 hThread = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID);
 CloseHandle(hThread);
 Sleep(1);
 WaitForSingleObject(hSemaphore, INFINITE);
 printf("%d\n", g_x);
 getchar();
 return 0;
}
DWORD WINAPI ThreadFunc(PVOID pPara)
{
 int tick = 0;
 WaitForSingleObject(hSemaphore, INFINITE);
 while (tick++ < COUNT)
 {
  g_x++;
 }
 ReleaseSemaphore(hSemaphore, 1, NULL);
 return 0;
}
           

解决方法七,互斥锁/互斥量和等待函数:

#define MUTEX "MUTEX"
HANDLE hMutex;
int main(void)
{
 HANDLE hThread_1 = NULL, hThread_2 = NULL;
 DWORD ThreadID_1, ThreadID_2;
 hMutex = CreateMutex(NULL, 0, MUTEX);
 hThread_1 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_1);
 hThread_2 = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &ThreadID_2);
 CloseHandle(hThread_1);
 CloseHandle(hThread_2);
 Sleep(1000);
 printf("%d\n", g_x);
 getchar();
 return 0;
}
DWORD WINAPI ThreadFunc(PVOID pPara)
{
 int tick = 0;
 WaitForSingleObject(hMutex, INFINITE);
 while (tick++ < COUNT)
 {
  g_x++;
 }
 ReleaseMutex(hMutex);
 return 0;
}