天天看点

SVM-支持向量机(二)

上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于svm的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?回头再看看我们对间隔和几何间隔的定义:

间隔:δ=y(wx+b)=|g(x)|

SVM-支持向量机(二)

可以看出δ=||w||δ几何。注意到几何间隔与||w||是成反比的,因此最大化几何间隔与最小化||w||完全是一回事。而我们常用的方法并不是固定||w||的大小而寻求最大几何间隔,而是固定间隔(例如固定为1),寻找最小的||w||。

而凡是求一个函数的最小值(或最大值)的问题都可以称为寻优问题(也叫作一个规划问题),又由于找最大值的问题总可以通过加一个负号变为找最小值的问题,因此我们下面讨论的时候都针对找最小值的过程来进行。一个寻优问题最重要的部分是目标函数,顾名思义,就是指寻优的目标。例如我们想寻找最小的||w||这件事,就可以用下面的式子表示:

SVM-支持向量机(二)

但实际上对于这个目标,我们常常使用另一个完全等价的目标函数来代替,那就是:

SVM-支持向量机(二)

不难看出当||w||2达到最小时,||w||也达到最小,反之亦然(前提当然是||w||描述的是向量的长度,因而是非负的)。之所以采用这种形式,是因为后面的求解过程会对目标函数作一系列变换,而式(1)的形式会使变换后的形式更为简洁(正如聪明的读者所料,添加的系数二分之一和平方,皆是为求导数所需)。

接下来我们自然会问的就是,这个式子是否就描述了我们的问题呢?(回想一下,我们的问题是有一堆点,可以被分成两类,我们要找出最好的分类面)

如果直接来解这个求最小值问题,很容易看出当||w||=0的时候就得到了目标函数的最小值。但是你也会发现,无论你给什么样的数据,都是这个解!反映在图中,就是h1与h2两条直线间的距离无限大,这个时候,所有的样本点(无论正样本还是负样本)都跑到了h1和h2中间,而我们原本的意图是,h1右侧的被分为正类,h2 左侧的被分为负类,位于两类中间的样本则拒绝分类(拒绝分类的另一种理解是分给哪一类都有道理,因而分给哪一类也都没有道理)。这下可好,所有样本点都进入了无法分类的灰色地带。

SVM-支持向量机(二)

造成这种结果的原因是在描述问题的时候只考虑了目标,而没有加入约束条件,约束条件就是在求解过程中必须满足的条件,体现在我们的问题中就是样本点必须在h1或h2的某一侧(或者至少在h1和h2上),而不能跑到两者中间。我们前文提到过把间隔固定为1,这是指把所有样本点中间隔最小的那一点的间隔定为1(这也是集合的间隔的定义,有点绕嘴),也就意味着集合中的其他点间隔都不会小于1,按照间隔的定义,满足这些条件就相当于让下面的式子总是成立:

yi[(w·xi)+b]≥1 (i=1,2,…,l) (l是总的样本数)

但我们常常习惯让式子的值和0比较,因而经常用变换过的形式:

yi[(w·xi)+b]-1≥0 (i=1,2,…,l) (l是总的样本数)

因此我们的两类分类问题也被我们转化成了它的数学形式,一个带约束的最小值的问题:

SVM-支持向量机(二)

从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示:

SVM-支持向量机(二)

约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束。

关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(视乎你解决的问题空间维数,对我们的文本分类来说,那可是成千上万啊)。要求f(x)在哪一点上取得最小值(反倒不太关心这个最小值到底是多少,关键是哪一点),但不是在整个空间里找,而是在约束条件所划定的一个有限的空间里找,这个有限的空间就是优化理论里所说的可行域。注意可行域中的每一个点都要求满足所有p+q个条件,而不是满足其中一条或几条就可以(切记,要满足每个约束),同时可行域边界上的点有一个额外好的特性,它们可以使不等式约束取得等号!而边界内的点不行。

关于可行域还有个概念不得不提,那就是凸集,凸集是指有这么一个点的集合,其中任取两个点连一条直线,这条线上的点仍然在这个集合内部,因此说“凸”是很形象的(一个反例是,二维平面上,一个月牙形的区域就不是凸集,你随便就可以找到两个点违反了刚才的规定)。

回头再来看我们线性分类器问题的描述,可以看出更多的东西。

SVM-支持向量机(二)

在这个问题中,自变量就是w,而目标函数是w的二次函数,所有的约束条件都是w的线性函数(哎,千万不要把xi当成变量,它代表样本,是已知的),这种规划问题有个很有名气的称呼——二次规划(quadratic programming,qp),而且可以更进一步的说,由于它的可行域是一个凸集,因此它是一个凸二次规划。

一下子提了这么多术语,实在不是为了让大家以后能向别人炫耀学识的渊博,这其实是我们继续下去的一个重要前提,因为在动手求一个问题的解之前(好吧,我承认,是动计算机求……),我们必须先问自己:这个问题是不是有解?如果有解,是否能找到?

对于一般意义上的规划问题,两个问题的答案都是不一定,但凸二次规划让人喜欢的地方就在于,它有解(教科书里面为了严谨,常常加限定成分,说它有全局最优解,由于我们想找的本来就是全局最优的解,所以不加也罢),而且可以找到!(当然,依据你使用的算法不同,找到这个解的速度,行话叫收敛速度,会有所不同)

对比(式2)和(式1)还可以发现,我们的线性分类器问题只有不等式约束,因此形式上看似乎比一般意义上的规划问题要简单,但解起来却并非如此。

因为我们实际上并不知道该怎么解一个带约束的优化问题。如果你仔细回忆一下高等数学的知识,会记得我们可以轻松的解一个不带任何约束的优化问题(实际上就是当年背得烂熟的函数求极值嘛,求导再找0点呗,谁不会啊?笑),我们甚至还会解一个只带等式约束的优化问题,也是背得烂熟的,求条件极值,记得么,通过添加拉格朗日乘子,构造拉格朗日函数,来把这个问题转化为无约束的优化问题云云(如果你一时没想通,我提醒一下,构造出的拉格朗日函数就是转化之后的问题形式,它显然没有带任何条件)。

让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图,

SVM-支持向量机(二)

圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例。我们想求得这样一个线性函数(在n维空间中的线性函数):

g(x)=wx+b

求这样的g(x)的过程就是求w(一个n维向量)和b(一个实数)两个参数的过程(但实际上只需要求w,求得以后找某些样本点代入就可以求得b)。因此在求g(x)的时候,w才是变量。

你肯定能看出来,一旦求出了w(也就求出了b),那么中间的直线h就知道了(因为它就是wx+b=0嘛,哈哈),那么h1和h2也就知道了(因为三者是平行的,而且相隔的距离还是||w||决定的)。那么w是谁决定的?显然是你给的样本决定的,一旦你在空间中给出了那些个样本点,三条直线的位置实际上就唯一确定了(因为我们求的是最优的那三条,当然是唯一的),我们解优化问题的过程也只不过是把这个确定了的东西算出来而已。

样本确定了w,用数学的语言描述,就是w可以表示为样本的某种组合:

w=α1x1+α2x2+…+αnxn

式子中的αi是一个一个的数(在严格的证明过程中,这些α被称为拉格朗日乘子),而xi是样本点,因而是向量,n就是总样本点的个数。为了方便描述,以下开始严格区别数字与向量的乘积和向量间的乘积,我会用α1x1表示数字和向量的乘积,而用<x1,x2>表示向量x1,x2的内积(也叫点积,注意与向量叉积的区别)。因此g(x)的表达式严格的形式应该是:

g(x)=<w,x>+b

但是上面的式子还不够好,你回头看看图中正样本和负样本的位置,想像一下,我不动所有点的位置,而只是把其中一个正样本点定为负样本点(也就是把一个点的形状从圆形变为方形),结果怎么样?三条直线都必须移动(因为对这三条直线的要求是必须把方形和圆形的点正确分开)!这说明w不仅跟样本点的位置有关,还跟样本的类别有关(也就是和样本的“标签”有关)。因此用下面这个式子表示才算完整:

w=α1y1x1+α2y2x2+…+αnynxn (式1)

其中的yi就是第i个样本的标签,它等于1或者-1。其实以上式子的那一堆拉格朗日乘子中,只有很少的一部分不等于0(不等于0才对w起决定作用),这部分不等于0的拉格朗日乘子后面所乘的样本点,其实都落在h1和h2上,也正是这部分样本(而不需要全部样本)唯一的确定了分类函数,当然,更严格的说,这些样本的一部分就可以确定,因为例如确定一条直线,只需要两个点就可以,即便有三五个都落在上面,我们也不是全都需要。这部分我们真正需要的样本点,就叫做支持(撑)向量!(名字还挺形象吧,他们“撑”起了分界线)

式子也可以用求和符号简写一下:

SVM-支持向量机(二)

因此原来的g(x)表达式可以写为:

SVM-支持向量机(二)

注意式子中x才是变量,也就是你要分类哪篇文档,就把该文档的向量表示代入到 x的位置,而所有的xi统统都是已知的样本。还注意到式子中只有xi和x是向量,因此一部分可以从内积符号中拿出来,得到g(x)的式子为:

SVM-支持向量机(二)

发现了什么?w不见啦!从求w变成了求α。

但肯定有人会说,这并没有把原问题简化呀。嘿嘿,其实简化了,只不过在你看不见的地方,以这样的形式描述问题以后,我们的优化问题少了很大一部分不等式约束(记得这是我们解不了极值问题的万恶之源)。但是接下来先跳过线性分类器求解的部分,来看看 svm在线性分类器上所做的重大改进——核函数。

继续阅读